Abstract

It was proved [Opt. Lett. 30, 720 (2005) ] that the deposition of an overlay of higher refractive index than that of the cladding on a long-period fiber grating (LPFG) causes large shifts in the attenuation bands induced by the grating. The result is an enhancement of the sensitivity of the LPFG to variations in the ambient and overlay refractive indices or the overlay thickness. The limitation of the previous design to materials with higher refractive indices than that of the cladding of the LPFG is overcome with a five-layer model. To this purpose, a first overlay of higher refractive index than that of the cladding of the LPFG will enhance the sensitivity of the device to variations in the refractive index of a second overlay of lower refractive index than that of the cladding of the LPFG. Moreover, it is proved that, if the second overlay is thick enough, its behavior resembles that of an infinite layer.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, Opt. Lett. 27, 686 (2002).
    [CrossRef]
  2. I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, Opt. Express 13, 56 (2005).
    [CrossRef] [PubMed]
  3. I. Del Villar, M. Achaerandio, I. R. Matias, and F. J. Arregui, Opt. Lett. 30, 720 (2005).
    [CrossRef] [PubMed]
  4. P. Pilla, L. Contessa, S. Campopiano, A. Cusano, A. Cutolo, and M. Giordano, Proc. SPIE 5855, 483 (2005).
    [CrossRef]
  5. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, J. Lightwave Technol. 21, 218 (2003).
    [CrossRef]
  6. T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
    [CrossRef]
  7. D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
    [CrossRef]
  8. Y. Koyamada, IEEE Photon. Technol. Lett. 13, 308 (2001).
    [CrossRef]
  9. Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, IEEE J. Quantum Electron. 39, 1135 (2003).
    [CrossRef]
  10. I. Del Villar, I. R. Matias, F. J. Arregui, and R. O Claus, IEEE Trans. Nanotechnol. 4, 187 (2005).
    [CrossRef]

2005 (4)

I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, Opt. Express 13, 56 (2005).
[CrossRef] [PubMed]

I. Del Villar, M. Achaerandio, I. R. Matias, and F. J. Arregui, Opt. Lett. 30, 720 (2005).
[CrossRef] [PubMed]

P. Pilla, L. Contessa, S. Campopiano, A. Cusano, A. Cutolo, and M. Giordano, Proc. SPIE 5855, 483 (2005).
[CrossRef]

I. Del Villar, I. R. Matias, F. J. Arregui, and R. O Claus, IEEE Trans. Nanotechnol. 4, 187 (2005).
[CrossRef]

2003 (2)

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, J. Lightwave Technol. 21, 218 (2003).
[CrossRef]

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, IEEE J. Quantum Electron. 39, 1135 (2003).
[CrossRef]

2002 (1)

2001 (1)

Y. Koyamada, IEEE Photon. Technol. Lett. 13, 308 (2001).
[CrossRef]

1999 (1)

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

1997 (1)

Achaerandio, M.

Anemogiannis, E.

Arregui, F. J.

Ashwell, G. J.

Campopiano, S.

P. Pilla, L. Contessa, S. Campopiano, A. Cusano, A. Cutolo, and M. Giordano, Proc. SPIE 5855, 483 (2005).
[CrossRef]

Claus, R. O

I. Del Villar, I. R. Matias, F. J. Arregui, and R. O Claus, IEEE Trans. Nanotechnol. 4, 187 (2005).
[CrossRef]

Contessa, L.

P. Pilla, L. Contessa, S. Campopiano, A. Cusano, A. Cutolo, and M. Giordano, Proc. SPIE 5855, 483 (2005).
[CrossRef]

Cusano, A.

P. Pilla, L. Contessa, S. Campopiano, A. Cusano, A. Cutolo, and M. Giordano, Proc. SPIE 5855, 483 (2005).
[CrossRef]

Cutolo, A.

P. Pilla, L. Contessa, S. Campopiano, A. Cusano, A. Cutolo, and M. Giordano, Proc. SPIE 5855, 483 (2005).
[CrossRef]

Del Villar, I.

Erdogan, T.

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
[CrossRef]

Gaylord, T. K.

Giordano, M.

P. Pilla, L. Contessa, S. Campopiano, A. Cusano, A. Cutolo, and M. Giordano, Proc. SPIE 5855, 483 (2005).
[CrossRef]

Glytsis, E. N.

James, S. W.

Jeong, Y.

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, IEEE J. Quantum Electron. 39, 1135 (2003).
[CrossRef]

Koyamada, Y.

Y. Koyamada, IEEE Photon. Technol. Lett. 13, 308 (2001).
[CrossRef]

Lalanne, P.

Lee, B.

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, IEEE J. Quantum Electron. 39, 1135 (2003).
[CrossRef]

Matias, I. R.

I. Del Villar, I. R. Matias, F. J. Arregui, and R. O Claus, IEEE Trans. Nanotechnol. 4, 187 (2005).
[CrossRef]

I. Del Villar, M. Achaerandio, I. R. Matias, and F. J. Arregui, Opt. Lett. 30, 720 (2005).
[CrossRef] [PubMed]

Matías, I. R.

Nilsson, J.

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, IEEE J. Quantum Electron. 39, 1135 (2003).
[CrossRef]

Pilla, P.

P. Pilla, L. Contessa, S. Campopiano, A. Cusano, A. Cutolo, and M. Giordano, Proc. SPIE 5855, 483 (2005).
[CrossRef]

Rees, N. D.

Richardson, D. J.

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, IEEE J. Quantum Electron. 39, 1135 (2003).
[CrossRef]

Stegall, D. B.

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

Tatam, R. P.

IEEE J. Quantum Electron. (1)

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, IEEE J. Quantum Electron. 39, 1135 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

Y. Koyamada, IEEE Photon. Technol. Lett. 13, 308 (2001).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

I. Del Villar, I. R. Matias, F. J. Arregui, and R. O Claus, IEEE Trans. Nanotechnol. 4, 187 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

P. Pilla, L. Contessa, S. Campopiano, A. Cusano, A. Cutolo, and M. Giordano, Proc. SPIE 5855, 483 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

LPFG structure with two overlays deposited upon the cladding.

Fig. 2
Fig. 2

Resonance wavelength shift of HE 1 , 16 cladding mode resonance as a function of the thickness of the overlay. Three ambient refractive indices are analyzed: 1 (air), 1.33 (water), and 1,37 ( [ PAH + Prussian Blue + PAA ] ) .

Fig. 3
Fig. 3

Resonance wavelength of HE 1 , 16 cladding mode as a function of ambient refractive index for a LPFG without an overlay and with an overlay of 68.72 nm and refractive index 1.62.

Fig. 4
Fig. 4

First overlay thickness value for fixing HE 1 , 16 cladding mode resonance to 1450 nm as a function of second overlay thickness.

Fig. 5
Fig. 5

Resonance wavelength of HE 1 , 16 cladding mode of a LPFG with two overlays as a function of the refractive index of the second overlay. The refractive index of the first overlay is 1.62, and the ambient refractive index is 1 (air).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β 11 ( λ ) + s 0 ζ 11 , 11 ( λ ) [ β 1 j ( λ ) + s 0 ζ 1 j , 1 j ( λ ) ] = 2 π Λ ,

Metrics