Abstract

Stability enhancement on the basis of four-wave mixing (FWM) is proposed and proved for the first time to our knowledge. This technique is applied to dual-wavelength erbium-doped fiber lasers. Significant uniformity and stability of the novel fiber lasers are demonstrated experimentally.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Lin and G. P. Agrawal, Opt. Lett. 29, 1114 (2004).
    [CrossRef] [PubMed]
  2. W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
    [CrossRef]
  3. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, Opt. Lett. 27, 1675 (2002).
    [CrossRef]
  4. See, e.g., http://www.crystal-fibre.com/datasheets/NL-1550-POS-1.pdf.
  5. Y. Lee and B. Lee, IEEE Photon. Technol. Lett. 15, 795 (2003).
    [CrossRef]
  6. Y. Z. Xu, H. Y. Tam, W. C. Du, and M. S. Demokan, IEEE Photon. Technol. Lett. 10, 334 (1998).
    [CrossRef]
  7. E. Desurvire, J. L. Zyskind, and J. R. Simpson, IEEE Photon. Technol. Lett. 2, 246 (1990).
    [CrossRef]
  8. Q. H. Mao and J. W.Y. Lit, IEEE J. Quantum Electron. 39, 125 (2003).
  9. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  10. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St.J. Russell, Opt. Express 12, 6498 (2004).
    [CrossRef] [PubMed]

2004 (2)

2003 (2)

Q. H. Mao and J. W.Y. Lit, IEEE J. Quantum Electron. 39, 125 (2003).

Y. Lee and B. Lee, IEEE Photon. Technol. Lett. 15, 795 (2003).
[CrossRef]

2002 (1)

1998 (1)

Y. Z. Xu, H. Y. Tam, W. C. Du, and M. S. Demokan, IEEE Photon. Technol. Lett. 10, 334 (1998).
[CrossRef]

1994 (1)

W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
[CrossRef]

1990 (1)

E. Desurvire, J. L. Zyskind, and J. R. Simpson, IEEE Photon. Technol. Lett. 2, 246 (1990).
[CrossRef]

Agrawal, G. P.

Q. Lin and G. P. Agrawal, Opt. Lett. 29, 1114 (2004).
[CrossRef] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Biancalana, F.

Chi, S.

W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
[CrossRef]

Demokan, M. S.

Y. Z. Xu, H. Y. Tam, W. C. Du, and M. S. Demokan, IEEE Photon. Technol. Lett. 10, 334 (1998).
[CrossRef]

Desurvire, E.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, IEEE Photon. Technol. Lett. 2, 246 (1990).
[CrossRef]

Du, W. C.

Y. Z. Xu, H. Y. Tam, W. C. Du, and M. S. Demokan, IEEE Photon. Technol. Lett. 10, 334 (1998).
[CrossRef]

Efimov, A.

Fiorentino, M.

Joly, N. Y.

Knight, J. C.

Kumar, P.

Lee, B.

Y. Lee and B. Lee, IEEE Photon. Technol. Lett. 15, 795 (2003).
[CrossRef]

Lee, Y.

Y. Lee and B. Lee, IEEE Photon. Technol. Lett. 15, 795 (2003).
[CrossRef]

Lin, Q.

Lit, J. W.Y.

Q. H. Mao and J. W.Y. Lit, IEEE J. Quantum Electron. 39, 125 (2003).

Mao, Q. H.

Q. H. Mao and J. W.Y. Lit, IEEE J. Quantum Electron. 39, 125 (2003).

Omenetto, F. G.

Russell, P. St.J.

Sharping, J. E.

Simpson, J. R.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, IEEE Photon. Technol. Lett. 2, 246 (1990).
[CrossRef]

Skryabin, D. V.

Tam, H. Y.

Y. Z. Xu, H. Y. Tam, W. C. Du, and M. S. Demokan, IEEE Photon. Technol. Lett. 10, 334 (1998).
[CrossRef]

Taylor, A. J.

Windeler, R. S.

Wu, W.

W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
[CrossRef]

Xu, Y. Z.

Y. Z. Xu, H. Y. Tam, W. C. Du, and M. S. Demokan, IEEE Photon. Technol. Lett. 10, 334 (1998).
[CrossRef]

Yeh, P.

W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
[CrossRef]

Yulin, A. V.

Zyskind, J. L.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, IEEE Photon. Technol. Lett. 2, 246 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

Q. H. Mao and J. W.Y. Lit, IEEE J. Quantum Electron. 39, 125 (2003).

IEEE Photon. Technol. Lett. (4)

W. Wu, P. Yeh, and S. Chi, IEEE Photon. Technol. Lett. 6, 1448 (1994).
[CrossRef]

Y. Lee and B. Lee, IEEE Photon. Technol. Lett. 15, 795 (2003).
[CrossRef]

Y. Z. Xu, H. Y. Tam, W. C. Du, and M. S. Demokan, IEEE Photon. Technol. Lett. 10, 334 (1998).
[CrossRef]

E. Desurvire, J. L. Zyskind, and J. R. Simpson, IEEE Photon. Technol. Lett. 2, 246 (1990).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

See, e.g., http://www.crystal-fibre.com/datasheets/NL-1550-POS-1.pdf.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Output spectra for the DW EDFL measured from coupler 1 of Fig. 2 at pump current I = 285 mA . A typical result for a DW EDFL is framed by a dashed rectangle.

Fig. 2
Fig. 2

Experimental setup for our DW EDFL. Coupler-1 outputs the spectra of EDFL, and coupler-2 monitors the reflection power spectra of the two FBGs. The inset is measured from Coupler-2 and corresponds to Fig. 1.

Fig. 3
Fig. 3

(a) Output spectra in terms of pump current I and (b) the corresponding ratio of P 112 P 1 and P 221 P 2 . ω 1 , ω 2 and ω 112 , and ω 221 denote the two lasing waves and the generated idlers, respectively. Their corresponding powers are P 1 , P 2 , P 112 , and P 221 .

Fig. 4
Fig. 4

(a) Output power spectra measured every 5 min at I = 285 mA and (b) the corresponding peaks at ω 1 , ω 2 , ω 112 , and ω 221 . The data are measured through coupler 1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d A c d z = i γ { [ A c 2 + 2 ( A a 2 + A b 2 ) ] A c + A b * A a 2 exp ( i Δ β z ) } ,
A c z 0 z 0 + L i γ A b * A a 2 exp ( i Δ β z ) d z .
Δ P c γ 2 L 2 P a 2 P b ,
P 112 = γ 2 L 2 P 1 2 P 2 , P 221 = γ 2 L 2 P 2 2 P 1 ,
Δ P = Δ P 2 Δ P 1 = γ 2 L 2 P 1 P 2 ( P 1 P 2 ) .

Metrics