Abstract

Silicon photonic crystals offer new ways of controlling the propagation of light as well as new tools for the realization of high-density optical integration on monolithic substrates. However, silicon does not possess the strong nonlinearities that are commonly used in the dynamic control of optical devices. Such dynamic control is nevertheless essential if silicon is to provide the higher levels of functionality that are required for optical integration. We demonstrate that the combination of the refractive index change caused by the presence of photoexcited carriers, or so-called plasma dispersion, and photonic crystal properties such as photonic bandgaps, constitutes a powerful tool for active control of light in silicon integrated devices. We show close to 100% modulation depth near the photonic crystal band edge.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi, J. Phys. Condens. Matter 15, R1169 (2003).
    [CrossRef]
  2. R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. QE-23, 123 (1987).
    [CrossRef]
  3. C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, J. Lightwave Technol. 21, 2332 (2003).
    [CrossRef]
  4. S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, J. Appl. Phys. 68, 4964 (1990).
    [CrossRef]
  5. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 13772 (1991).
    [CrossRef]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, Opt. Lett. 29, 2867 (2004).
    [CrossRef]
  7. S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, Phys. Rev. B 66, 161102(R) (2002).
    [CrossRef]
  8. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  9. D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, Opt. Lett. 27, 1601 (2002).
    [CrossRef]
  10. M. C. Downer and C. V. Shank, Phys. Rev. Lett. 56, 761 (1986).
    [CrossRef] [PubMed]
  11. J. M. Liu, H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 41, 643 (1982).
    [CrossRef]
  12. M. Bertolotti, A. Ferrari, C. Sibilia, and M. Tamburrini, Appl. Phys. A Solids Surf. 37, 109 (1985).
    [CrossRef]

2004 (1)

2003 (2)

2002 (2)

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, Phys. Rev. B 66, 161102(R) (2002).
[CrossRef]

D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, Opt. Lett. 27, 1601 (2002).
[CrossRef]

1991 (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 13772 (1991).
[CrossRef]

1990 (1)

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, J. Appl. Phys. 68, 4964 (1990).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

1986 (1)

M. C. Downer and C. V. Shank, Phys. Rev. Lett. 56, 761 (1986).
[CrossRef] [PubMed]

1985 (1)

M. Bertolotti, A. Ferrari, C. Sibilia, and M. Tamburrini, Appl. Phys. A Solids Surf. 37, 109 (1985).
[CrossRef]

1982 (1)

J. M. Liu, H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 41, 643 (1982).
[CrossRef]

Almeida, V. R.

Barrios, C. A.

Bennett, B. R.

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

Bertolotti, M.

M. Bertolotti, A. Ferrari, C. Sibilia, and M. Tamburrini, Appl. Phys. A Solids Surf. 37, 109 (1985).
[CrossRef]

Bloembergen, N.

J. M. Liu, H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 41, 643 (1982).
[CrossRef]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 13772 (1991).
[CrossRef]

Chen, C.

Downer, M. C.

M. C. Downer and C. V. Shank, Phys. Rev. Lett. 56, 761 (1986).
[CrossRef] [PubMed]

Ferrari, A.

M. Bertolotti, A. Ferrari, C. Sibilia, and M. Tamburrini, Appl. Phys. A Solids Surf. 37, 109 (1985).
[CrossRef]

Foster, M. A.

Friedman, L.

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, J. Appl. Phys. 68, 4964 (1990).
[CrossRef]

Gaeta, A. L.

Giguere, S. R.

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, J. Appl. Phys. 68, 4964 (1990).
[CrossRef]

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 13772 (1991).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Kurz, H.

J. M. Liu, H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 41, 643 (1982).
[CrossRef]

Leonard, S. W.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, Phys. Rev. B 66, 161102(R) (2002).
[CrossRef]

Lipson, M.

Liu, J. M.

J. M. Liu, H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 41, 643 (1982).
[CrossRef]

Lorenzo, J. P.

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, J. Appl. Phys. 68, 4964 (1990).
[CrossRef]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 13772 (1991).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Murakowski, J.

Ouzounov, D. G.

Panepucci, R.

Panepucci, R. R.

Pavesi, L.

L. Pavesi, J. Phys. Condens. Matter 15, R1169 (2003).
[CrossRef]

Prather, D. W.

Pustai, D.

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 13772 (1991).
[CrossRef]

Schilling, J.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, Phys. Rev. B 66, 161102(R) (2002).
[CrossRef]

Shank, C. V.

M. C. Downer and C. V. Shank, Phys. Rev. Lett. 56, 761 (1986).
[CrossRef] [PubMed]

Sharkawy, A.

Shi, S.

Sibilia, C.

M. Bertolotti, A. Ferrari, C. Sibilia, and M. Tamburrini, Appl. Phys. A Solids Surf. 37, 109 (1985).
[CrossRef]

Soref, R. A.

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, J. Appl. Phys. 68, 4964 (1990).
[CrossRef]

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

Tamburrini, M.

M. Bertolotti, A. Ferrari, C. Sibilia, and M. Tamburrini, Appl. Phys. A Solids Surf. 37, 109 (1985).
[CrossRef]

van Driel, H. M.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, Phys. Rev. B 66, 161102(R) (2002).
[CrossRef]

Venkataraman, S.

Wehrspohn, R. B.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, Phys. Rev. B 66, 161102(R) (2002).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Appl. Phys. A Solids Surf. (1)

M. Bertolotti, A. Ferrari, C. Sibilia, and M. Tamburrini, Appl. Phys. A Solids Surf. 37, 109 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

J. M. Liu, H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 41, 643 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

J. Appl. Phys. (1)

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, J. Appl. Phys. 68, 4964 (1990).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. Condens. Matter (1)

L. Pavesi, J. Phys. Condens. Matter 15, R1169 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 13772 (1991).
[CrossRef]

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, Phys. Rev. B 66, 161102(R) (2002).
[CrossRef]

Phys. Rev. Lett. (1)

M. C. Downer and C. V. Shank, Phys. Rev. Lett. 56, 761 (1986).
[CrossRef] [PubMed]

Other (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulated transmission spectra of a sample with the pump off (solid curve) and the pump on (assuming a refractive index change of 0.1 , shown by the dashed curve).

Fig. 2
Fig. 2

(a) Top view of the experimental sample characterization setup. The plane of the PC is perpendicular to the paper. (b) Transmission spectrum of the sample. The plot shows beginning of a bandgap at 1610 nm . The inset shows a scanning electron microscope picture of the sample.

Fig. 3
Fig. 3

Turning on the pump ( 200 mW at 808 nm ) leads to a drop in transmission of the probe (at 1601.8 nm ) due to plasma dispersion. The waveguide is shown with the pump off and on.

Fig. 4
Fig. 4

Time-resolved measurement done on a second sample by use of 3 ps pulses at 808 nm from a Ti:sapphire laser with a repetition rate of 76 MHz . The data show a response of less than 2 ns to the 3 ps excitation. The inset shows a redshift in the transmission at high pump power associated with a thermo-optic effect from carrier cooling and recombination.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n r = e 2 λ 2 8 π 2 c 2 ε o n o ( Δ N e m e + Δ N h m h ) ,

Metrics