Abstract

A method for polarimetric measurement that uses a discrete space-variant subwavelength dielectric grating is presented. One retrieves the polarization state by measuring the far-field intensity of a beam emerging from the grating followed by a polarizer. The analysis for a partially polarized, quasi-monochromatic beam is performed by use of the beam coherence polarization matrix along with an extended van Cittert–Zernike theorem. We experimentally demonstrate polarization measurements of both fully and partially polarized light.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, J. Opt. Soc. Am. A 16, 1168 (1999).
    [CrossRef]
  2. R. M.A. Azzam, Opt. Lett. 12, 555 (1987).
    [CrossRef] [PubMed]
  3. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, Thin Solid Films 455-456, 112 (2004).
    [CrossRef]
  4. F. Gori, Opt. Lett. 24, 584 (1999).
    [CrossRef]
  5. E. Hasman, G. Biener, A. Niv, and V. Kleiner, ‘‘Space-variant polarization manipulation,’’ in Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47.
  6. E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
    [CrossRef]
  7. G. Biener, A. Niv, V. Kleiner, and E. Hasman, J. Opt. Soc. Am. A 20, 1940 (2003).
    [CrossRef]
  8. F. Gori, M. Santarsiero, R. Borghi, and G. Piquero, Opt. Lett. 25, 1291 (2000).
    [CrossRef]
  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
    [CrossRef]

2004

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, Thin Solid Films 455-456, 112 (2004).
[CrossRef]

2003

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, J. Opt. Soc. Am. A 20, 1940 (2003).
[CrossRef]

2000

1999

1987

Azzam, R. M.A.

Biener, G.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, J. Opt. Soc. Am. A 20, 1940 (2003).
[CrossRef]

E. Hasman, G. Biener, A. Niv, and V. Kleiner, ‘‘Space-variant polarization manipulation,’’ in Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47.

Borghi, R.

De Martino, A.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, Thin Solid Films 455-456, 112 (2004).
[CrossRef]

Deguzman, P. C.

Drévillon, B.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, Thin Solid Films 455-456, 112 (2004).
[CrossRef]

Garcia-Caurel, E.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, Thin Solid Films 455-456, 112 (2004).
[CrossRef]

Gori, F.

Hasman, E.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, J. Opt. Soc. Am. A 20, 1940 (2003).
[CrossRef]

E. Hasman, G. Biener, A. Niv, and V. Kleiner, ‘‘Space-variant polarization manipulation,’’ in Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47.

Jones, M. W.

Kleiner, V.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, J. Opt. Soc. Am. A 20, 1940 (2003).
[CrossRef]

E. Hasman, G. Biener, A. Niv, and V. Kleiner, ‘‘Space-variant polarization manipulation,’’ in Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47.

Laude, B.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, Thin Solid Films 455-456, 112 (2004).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
[CrossRef]

Meier, J. T.

Niv, A.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, J. Opt. Soc. Am. A 20, 1940 (2003).
[CrossRef]

E. Hasman, G. Biener, A. Niv, and V. Kleiner, ‘‘Space-variant polarization manipulation,’’ in Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47.

Nordin, G. P.

Piquero, G.

Santarsiero, M.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
[CrossRef]

Appl. Phys. Lett.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, Appl. Phys. Lett. 82, 328 (2003).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Thin Solid Films

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, Thin Solid Films 455-456, 112 (2004).
[CrossRef]

Other

E. Hasman, G. Biener, A. Niv, and V. Kleiner, ‘‘Space-variant polarization manipulation,’’ in Progress in Optics, E. Wolf, ed. (Elsevier, 2005), Vol. 47.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic presentation of a far-field polarimetry based on a DSG followed by a Fourier lens (L) and a polarizer (P). Inset, magnified geometry of a DSG with a number of discrete levels N = 4 . (b), (c) SEM images of the DSG, made on a GaAs wafer.

Fig. 2
Fig. 2

(a) Measured intensity in the focal plane of a beam emerging from a DSG followed by a polarizer oriented at 0°. (b) Measured (squares) and predicted (dashed curve) polarization states of a rotating QWP depicted on a Poincaré sphere. Measured (circles) and predicted (solid curves) values for (c) ellipticity angle χ and (d) azimuthal angle ψ as functions of the orientation of the QWP. The inset in (c) shows the setup for generating fully polarized light by use of a rotating QWP. FFP, the far-field polarimeter.

Fig. 3
Fig. 3

Calculated (dashed curve) and measured (circles) DOPs as functions of the intensity ratio of the two independent lasers that have orthogonal linear polarization states. The inset at the right shows the setup for combining the two lasers to generate partially polarized light. PBS, polarization beam splitter; M, mirror; L, lens; P, polarizer. Also shown are the experimental intensity distributions for DOPs of 0.15 and 0.92.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J ( ρ 1 , ρ 2 , z ) = [ j R R ( ρ 1 , ρ 2 , z ) j R L ( ρ 1 , ρ 2 , z ) j L R ( ρ 1 , ρ 2 , z ) j L L ( ρ 1 , ρ 2 , z ) ] ,
T = a [ 1 0 0 1 ] + b [ 0 exp [ i 2 θ ( ξ ) ] exp [ i 2 θ ( ξ ) ] 0 ] ,

Metrics