Abstract

Spatial gratings are recorded holographically by two femtosecond pump pulses at 388 nm in lithium niobate (LiNbO3) crystals and read out by a Bragg-matched, temporally delayed probe pulse at 776 nm. We claim, to our knowledge, the first holographic pump–probe experiments with subpicosecond temporal resolution for LiNbO3. An instantaneous grating that is due mostly to the Kerr effect as well as a long-lasting grating that results mainly from the absorption caused by photoexcited carriers was observed. The Kerr coefficient of LiNbO3 for our experimental conditions, i.e., pumped and probed at different wavelengths, was 1.0×105cm2GW.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, Phys. Status Solidi A 201, 253 (2004).
    [CrossRef]
  2. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, 1993).
  3. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, 1989).
  4. P. Boffi, D. Piccinin, and M. C. Ubaldi, Infrared Holography for Optical Communications (Springer-Verlag, 2003).
    [CrossRef]
  5. J. M.C. Jonathan, G. Roosen, and P. Roussignol, Opt. Lett. 13, 224 (1988).
    [CrossRef] [PubMed]
  6. A. L. Smirl, K. M. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, J. Opt. Soc. Am. B 66, 606 (1989).
    [CrossRef]
  7. I. Biaggio, M. Zgonik, and P. Günter, J. Opt. Soc. Am. B 9, 1480 (1992).
    [CrossRef]
  8. K. Oba, P. Sun, and Y. Fainman, Opt. Lett. 23, 915 (1998).
    [CrossRef]
  9. C. T. Chen, D. M. Kim, and D. von der Linde, Appl. Phys. Lett. 34, 321 (1979).
    [CrossRef]
  10. F. Jermann and J. Otten, J. Opt. Soc. Am. B 10, 2085 (1993).
    [CrossRef]
  11. O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Opt. Lett. 30, 1366 (2005).
    [CrossRef] [PubMed]
  12. O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Phys. Rev. E 71, 056603 (2005).
    [CrossRef]
  13. D. N. Nikogosian, Properties of Optical and Laser-Related Materials: A Handbook (Wiley Interscience, 1997).
  14. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]

2005 (2)

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Opt. Lett. 30, 1366 (2005).
[CrossRef] [PubMed]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Phys. Rev. E 71, 056603 (2005).
[CrossRef]

2004 (1)

L. Arizmendi, Phys. Status Solidi A 201, 253 (2004).
[CrossRef]

1998 (1)

1993 (1)

1992 (1)

1989 (1)

A. L. Smirl, K. M. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, J. Opt. Soc. Am. B 66, 606 (1989).
[CrossRef]

1988 (1)

1979 (1)

C. T. Chen, D. M. Kim, and D. von der Linde, Appl. Phys. Lett. 34, 321 (1979).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Arizmendi, L.

L. Arizmendi, Phys. Status Solidi A 201, 253 (2004).
[CrossRef]

Beyer, O.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Opt. Lett. 30, 1366 (2005).
[CrossRef] [PubMed]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Phys. Rev. E 71, 056603 (2005).
[CrossRef]

Biaggio, I.

Boffi, P.

P. Boffi, D. Piccinin, and M. C. Ubaldi, Infrared Holography for Optical Communications (Springer-Verlag, 2003).
[CrossRef]

Boggess, T. F.

A. L. Smirl, K. M. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, J. Opt. Soc. Am. B 66, 606 (1989).
[CrossRef]

Bohnert, K. M.

A. L. Smirl, K. M. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, J. Opt. Soc. Am. B 66, 606 (1989).
[CrossRef]

Buse, K.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Phys. Rev. E 71, 056603 (2005).
[CrossRef]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Opt. Lett. 30, 1366 (2005).
[CrossRef] [PubMed]

Chen, C. T.

C. T. Chen, D. M. Kim, and D. von der Linde, Appl. Phys. Lett. 34, 321 (1979).
[CrossRef]

Fainman, Y.

Günter, P.

I. Biaggio, M. Zgonik, and P. Günter, J. Opt. Soc. Am. B 9, 1480 (1992).
[CrossRef]

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, 1989).

Hsieh, H. T.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Opt. Lett. 30, 1366 (2005).
[CrossRef] [PubMed]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Phys. Rev. E 71, 056603 (2005).
[CrossRef]

Huignard, J. P.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, 1989).

Jermann, F.

Jonathan, J. M.C.

Kim, D. M.

C. T. Chen, D. M. Kim, and D. von der Linde, Appl. Phys. Lett. 34, 321 (1979).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Maxein, D.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Opt. Lett. 30, 1366 (2005).
[CrossRef] [PubMed]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Phys. Rev. E 71, 056603 (2005).
[CrossRef]

Mullen, R. A.

A. L. Smirl, K. M. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, J. Opt. Soc. Am. B 66, 606 (1989).
[CrossRef]

Nikogosian, D. N.

D. N. Nikogosian, Properties of Optical and Laser-Related Materials: A Handbook (Wiley Interscience, 1997).

Oba, K.

Otten, J.

Piccinin, D.

P. Boffi, D. Piccinin, and M. C. Ubaldi, Infrared Holography for Optical Communications (Springer-Verlag, 2003).
[CrossRef]

Psaltis, D.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Opt. Lett. 30, 1366 (2005).
[CrossRef] [PubMed]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Phys. Rev. E 71, 056603 (2005).
[CrossRef]

Roosen, G.

Roussignol, P.

Smirl, A. L.

A. L. Smirl, K. M. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, J. Opt. Soc. Am. B 66, 606 (1989).
[CrossRef]

Sturman, B.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Opt. Lett. 30, 1366 (2005).
[CrossRef] [PubMed]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Phys. Rev. E 71, 056603 (2005).
[CrossRef]

Sun, P.

Ubaldi, M. C.

P. Boffi, D. Piccinin, and M. C. Ubaldi, Infrared Holography for Optical Communications (Springer-Verlag, 2003).
[CrossRef]

Valley, G. C.

A. L. Smirl, K. M. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, J. Opt. Soc. Am. B 66, 606 (1989).
[CrossRef]

von der Linde, D.

C. T. Chen, D. M. Kim, and D. von der Linde, Appl. Phys. Lett. 34, 321 (1979).
[CrossRef]

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, 1993).

Zgonik, M.

Appl. Phys. Lett. (1)

C. T. Chen, D. M. Kim, and D. von der Linde, Appl. Phys. Lett. 34, 321 (1979).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

J. Opt. Soc. Am. B (3)

A. L. Smirl, K. M. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, J. Opt. Soc. Am. B 66, 606 (1989).
[CrossRef]

I. Biaggio, M. Zgonik, and P. Günter, J. Opt. Soc. Am. B 9, 1480 (1992).
[CrossRef]

F. Jermann and J. Otten, J. Opt. Soc. Am. B 10, 2085 (1993).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. E (1)

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, Phys. Rev. E 71, 056603 (2005).
[CrossRef]

Phys. Status Solidi A (1)

L. Arizmendi, Phys. Status Solidi A 201, 253 (2004).
[CrossRef]

Other (4)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, 1993).

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, 1989).

P. Boffi, D. Piccinin, and M. C. Ubaldi, Infrared Holography for Optical Communications (Springer-Verlag, 2003).
[CrossRef]

D. N. Nikogosian, Properties of Optical and Laser-Related Materials: A Handbook (Wiley Interscience, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the holographic pump–probe setup in LiNbO 3 : λ p , λ r , wavelengths of pump and probe pulses, respectively, D, photodiode; DS delay stage; L, lens; λ 2 , half-wave plate for λ r ; P, polarizer.

Fig. 2
Fig. 2

Diffraction efficiency for I p 23 GW cm 2 and for pump and probe pulses polarized parallel to the crystal polar axis in a LiNbO 3 : Fe sample with thickness 70 μ m . A theoretical fit yields the Kerr coefficient n 2 1.0 × 10 5 cm 2 GW for LiNbO 3 . The dotted curve is a guide to the eye.

Fig. 3
Fig. 3

Summary of measured values of η p and η c for different pump intensities I p in the 70 μ m LiNbO 3 : Fe sample. All pulses are polarized along the polar axis of the sample.

Fig. 4
Fig. 4

Diffraction efficiency η as a function of probe delay Δ t with peak pump intensities I p 170 GW cm 2 for the 70 μ m thick crystal. Data acquired from a 1 mm thick, undoped LiNbO 3 sample are plotted in the inset. The pump pulses are polarized along the polar axis, and η ( η ) is measured when the polarization of the probe pulses is parallel (perpendicular) to that of the pump pulses.

Metrics