Abstract

We report the generation of an 80Gbits pulse train by an eighth-order rational harmonic mode-locking technique. Equalized pulse-train amplitude is achieved by proper adjustment of the dc bias point and the 10 GHz modulation strength applied to the cavity-loss modulator. A numerical model is developed to simulate the properties of the generated 80Gbits pulse train. The simulated results are well supported by the experimental measurements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996).
    [CrossRef]
  2. C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
    [CrossRef]
  3. E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1370 (1996).
    [CrossRef]
  4. G. Zhu, H. Chen, and N. Dutta, J. Appl. Phys. 90, 2143 (2001).
    [CrossRef]
  5. M. Jeon, H. Lee, J. Ahn, K. Kim, D. Lim, and E. Lee, Opt. Lett. 23, 855 (1998).
    [CrossRef]
  6. C. Lee, Y. Kim, H. Choi, and C. Park, Opt. Commun. 209, 417 (2002).
    [CrossRef]
  7. Y. Kim, C. Lee, and Y. Chun, Opt. Express 12, 907 (2004).
    [CrossRef] [PubMed]
  8. X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, IEEE Photon. Technol. Lett. 16, 1813 (2004).
    [CrossRef]

2004

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, IEEE Photon. Technol. Lett. 16, 1813 (2004).
[CrossRef]

Y. Kim, C. Lee, and Y. Chun, Opt. Express 12, 907 (2004).
[CrossRef] [PubMed]

2002

C. Lee, Y. Kim, H. Choi, and C. Park, Opt. Commun. 209, 417 (2002).
[CrossRef]

2001

G. Zhu, H. Chen, and N. Dutta, J. Appl. Phys. 90, 2143 (2001).
[CrossRef]

2000

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

1998

1996

E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1370 (1996).
[CrossRef]

Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996).
[CrossRef]

Ahmed, Z.

Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996).
[CrossRef]

Ahn, J.

Chen, H.

G. Zhu, H. Chen, and N. Dutta, J. Appl. Phys. 90, 2143 (2001).
[CrossRef]

Choi, H.

C. Lee, Y. Kim, H. Choi, and C. Park, Opt. Commun. 209, 417 (2002).
[CrossRef]

Chun, Y.

Dong, X.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, IEEE Photon. Technol. Lett. 16, 1813 (2004).
[CrossRef]

Dutta, N.

G. Zhu, H. Chen, and N. Dutta, J. Appl. Phys. 90, 2143 (2001).
[CrossRef]

Dutta, N. K.

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

Feng, X.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, IEEE Photon. Technol. Lett. 16, 1813 (2004).
[CrossRef]

Jeon, M.

Kai, G.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, IEEE Photon. Technol. Lett. 16, 1813 (2004).
[CrossRef]

Kim, K.

Kim, Y.

Y. Kim, C. Lee, and Y. Chun, Opt. Express 12, 907 (2004).
[CrossRef] [PubMed]

C. Lee, Y. Kim, H. Choi, and C. Park, Opt. Commun. 209, 417 (2002).
[CrossRef]

Lee, C.

Y. Kim, C. Lee, and Y. Chun, Opt. Express 12, 907 (2004).
[CrossRef] [PubMed]

C. Lee, Y. Kim, H. Choi, and C. Park, Opt. Commun. 209, 417 (2002).
[CrossRef]

Lee, E.

Lee, H.

Lim, D.

Liu, Y.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, IEEE Photon. Technol. Lett. 16, 1813 (2004).
[CrossRef]

Nakazawa, M.

E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1370 (1996).
[CrossRef]

Onodera, N.

Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996).
[CrossRef]

Park, C.

C. Lee, Y. Kim, H. Choi, and C. Park, Opt. Commun. 209, 417 (2002).
[CrossRef]

Wu, C.

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

Yoshida, E.

E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1370 (1996).
[CrossRef]

Yuan, S.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, IEEE Photon. Technol. Lett. 16, 1813 (2004).
[CrossRef]

Zhang, W.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, IEEE Photon. Technol. Lett. 16, 1813 (2004).
[CrossRef]

Zhu, G.

G. Zhu, H. Chen, and N. Dutta, J. Appl. Phys. 90, 2143 (2001).
[CrossRef]

Electron. Lett.

Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996).
[CrossRef]

E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1370 (1996).
[CrossRef]

IEEE J. Quantum Electron.

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, IEEE Photon. Technol. Lett. 16, 1813 (2004).
[CrossRef]

J. Appl. Phys.

G. Zhu, H. Chen, and N. Dutta, J. Appl. Phys. 90, 2143 (2001).
[CrossRef]

Opt. Commun.

C. Lee, Y. Kim, H. Choi, and C. Park, Opt. Commun. 209, 417 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Generation of an eighth-order rational harmonic mode-locked pulse train with amplitude-equalized output by the modulator transmittance adjustment method. Curve, intensity transmittance of the modulator; vertical lines, the eight possible positions where the circulating pulse can arrive at the modulator. The modulator is biased at V b = 0 . Adjusting the modulation strength V m such that the transmittance measured at position A equals the transmittance measured at position B, generates an amplitude-equalized eighth-order rational harmonic mode-locked pulse train.

Fig. 2
Fig. 2

Numerical simulation results for an eighth-order rational harmonic mode-locked pulse train operating at 80 Gbits s . Simulated (a) modulator intensity transmittance, (b) optical power, (c) optical spectrum, and (d) autocorrelation trace of the generated pulse train. Modulation parameters, V b = 0 and V m = 1.53 π .

Fig. 3
Fig. 3

Schematic of the erbium-doped fiber laser. The ring cavity is composed of a Fabry–Perot (F.P.) bandpass filter, an isolator, a segment of erbium-doped fiber (E.D.F.), a polarization controller (P.C.), a LiNbO 3 intensity modulator, a 90–10 coupler, and two wavelength-division multiplexers (WDMs). The frequency synthesizer is tuned to 10 GHz, aiming to generate a pulse train with a repetition rate of 80 Gbits s .

Fig. 4
Fig. 4

Experimental results for an eighth-order rational harmonic mode-locked pulse train operating at 80 Gbits s . Measured (a) modulator intensity transmittance, (b) oscilloscope trace, (c) optical spectrum, and (d) autocorrelation trace of the generated pulse train.

Metrics