Abstract

We report the experimental realization of a new type of optical parametric oscillator in which oscillation is achieved by polarization rotation in a linear retarder, followed by nonlinear polarization mixing. The mixing is performed by a type II degenerate parametric downconversion in a periodically poled KTP crystal pumped by a 1064 nm pulsed Nd:YAG pump. A single, linearly polarized beam, precisely at the degenerate wavelength is generated. The output spectrum has a narrow linewidth (below the instrumentation bandwidth of 1 nm) and is highly stable with respect to variations in the crystal temperature.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Byer, J. Nonlinear Opt. Phys. Mater. 6, 549 (1997).
    [CrossRef]
  2. R. D. Guyer and D. D. Lowenthal, Proc. SPIE 1220, 41 (1990).
    [CrossRef]
  3. E. J. Mason and N. C. Wong, Opt. Lett. 23, 1733 (1998).
    [CrossRef]
  4. M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 90, 53 (2001).
    [CrossRef]
  5. M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 92, 7702 (2002).
    [CrossRef]
  6. A. V. Smith, “SNLO nonlinear optics code,” Sandia National Laboratories, Albuquerque, N.M. 87185-1423 (2004).
  7. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic2003).
  8. S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
    [CrossRef]

2002 (1)

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 92, 7702 (2002).
[CrossRef]

2001 (1)

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 90, 53 (2001).
[CrossRef]

1998 (1)

1997 (1)

R. L. Byer, J. Nonlinear Opt. Phys. Mater. 6, 549 (1997).
[CrossRef]

1990 (1)

R. D. Guyer and D. D. Lowenthal, Proc. SPIE 1220, 41 (1990).
[CrossRef]

1979 (1)

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic2003).

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Byer, R. L.

R. L. Byer, J. Nonlinear Opt. Phys. Mater. 6, 549 (1997).
[CrossRef]

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Eger, D.

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 92, 7702 (2002).
[CrossRef]

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 90, 53 (2001).
[CrossRef]

Guyer, R. D.

R. D. Guyer and D. D. Lowenthal, Proc. SPIE 1220, 41 (1990).
[CrossRef]

Hardy, A.

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 92, 7702 (2002).
[CrossRef]

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 90, 53 (2001).
[CrossRef]

Katz, M.

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 92, 7702 (2002).
[CrossRef]

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 90, 53 (2001).
[CrossRef]

Lowenthal, D. D.

R. D. Guyer and D. D. Lowenthal, Proc. SPIE 1220, 41 (1990).
[CrossRef]

Mason, E. J.

Oron, M. B.

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 92, 7702 (2002).
[CrossRef]

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 90, 53 (2001).
[CrossRef]

Smith, A. V.

A. V. Smith, “SNLO nonlinear optics code,” Sandia National Laboratories, Albuquerque, N.M. 87185-1423 (2004).

Wong, N. C.

IEEE J. Quantum Electron. (1)

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

J. Appl. Phys. (2)

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 90, 53 (2001).
[CrossRef]

M. Katz, D. Eger, M. B. Oron, and A. Hardy, J. Appl. Phys. 92, 7702 (2002).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

R. L. Byer, J. Nonlinear Opt. Phys. Mater. 6, 549 (1997).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

R. D. Guyer and D. D. Lowenthal, Proc. SPIE 1220, 41 (1990).
[CrossRef]

Other (2)

A. V. Smith, “SNLO nonlinear optics code,” Sandia National Laboratories, Albuquerque, N.M. 87185-1423 (2004).

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

PMO experimental setup.

Fig. 2
Fig. 2

Output power versus input pump power for the PMO. Diamonds, experimental results; solid line, triangles—results based on SNLO simulation with 100% and 80% output coupling, respectively; arrow, threshold calculated using Eq. (2).

Fig. 3
Fig. 3

Comparison of the spectrum of degenerate type I and type II DROs and a degenerate PMO. Inset, spectra of the type II DRO and the PMO with an expanded wavelength scale.

Fig. 4
Fig. 4

Oscillation wavelengths as a function of crystal temperature in a type II DRO and PMO.

Fig. 5
Fig. 5

Photon flux evolution at the PMO.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P n P 0 = [ R g ( g 1 ) ] p { Re 4 α l [ cosh 2 ( Γ l ) ] [ cosh 2 ( Γ l ) 1 ] } p ,
I Th = n s n i n p ε 0 c 3 2 ω s ω i g s d eff 2 ( 1.34 l ) 2 [ cosh 1 ( 1 2 1 + 1 + 4 Re 4 α l ( P n P 0 ) 2 L / c τ ) ] 2 ,

Metrics