Abstract

A simple method is proposed for visualizing the depth distribution of a local blood region in skin tissue by using diffuse reflectance images at two isosbestic wavelengths of hemoglobin, 420 and 585 nm. Monte Carlo simulation of light transport specifies a relation between optical densities and the depth of the region under given concentrations of melanin in the epidermis and blood in the dermis. Phantom and in vivo experiments were performed to show the usefulness of the method.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Tunnell, L. V. Wang, and B. Anvari, Appl. Opt. 42, 1367 (2003).
    [CrossRef] [PubMed]
  2. I. Nishidate, Y. Aizu, and H. Mishina, Opt. Rev. 10, 427 (2003).
    [CrossRef]
  3. M. G. Sowa, J. R. Payette, M. D. Hewko, and H. H. Mantsch, J. Biomed. Opt. 4, 474 (1999).
    [CrossRef] [PubMed]
  4. I. Nishidate, Y. Aizu, and H. Mishina, J. Biomed. Opt. 9, 700 (2004).
    [CrossRef] [PubMed]
  5. T. Iwai and G. Kimura, Opt. Rev. 7, 436 (2000).
    [CrossRef]
  6. S. L. Jacques, I. S. Saidi, and F. K. Tittel, Proc. SPIE 2128, 231 (1994).
    [CrossRef]
  7. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
    [CrossRef] [PubMed]
  8. S. L. Jacques, R. D. Glickman, and J. A. Schwartz, Proc. SPIE 2681, 468 (1996).
    [CrossRef]
  9. B. P. Payne, V. Venugopalan, B. B. Miki?, and N. S. Nishioka, J. Biomed. Opt. 8, 273 (2003).
    [CrossRef] [PubMed]

2004 (1)

I. Nishidate, Y. Aizu, and H. Mishina, J. Biomed. Opt. 9, 700 (2004).
[CrossRef] [PubMed]

2003 (3)

J. W. Tunnell, L. V. Wang, and B. Anvari, Appl. Opt. 42, 1367 (2003).
[CrossRef] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, Opt. Rev. 10, 427 (2003).
[CrossRef]

B. P. Payne, V. Venugopalan, B. B. Miki?, and N. S. Nishioka, J. Biomed. Opt. 8, 273 (2003).
[CrossRef] [PubMed]

2000 (1)

T. Iwai and G. Kimura, Opt. Rev. 7, 436 (2000).
[CrossRef]

1999 (1)

M. G. Sowa, J. R. Payette, M. D. Hewko, and H. H. Mantsch, J. Biomed. Opt. 4, 474 (1999).
[CrossRef] [PubMed]

1996 (1)

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, Proc. SPIE 2681, 468 (1996).
[CrossRef]

1995 (1)

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

1994 (1)

S. L. Jacques, I. S. Saidi, and F. K. Tittel, Proc. SPIE 2128, 231 (1994).
[CrossRef]

Aizu, Y.

I. Nishidate, Y. Aizu, and H. Mishina, J. Biomed. Opt. 9, 700 (2004).
[CrossRef] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, Opt. Rev. 10, 427 (2003).
[CrossRef]

Anvari, B.

Glickman, R. D.

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, Proc. SPIE 2681, 468 (1996).
[CrossRef]

Hewko, M. D.

M. G. Sowa, J. R. Payette, M. D. Hewko, and H. H. Mantsch, J. Biomed. Opt. 4, 474 (1999).
[CrossRef] [PubMed]

Iwai, T.

T. Iwai and G. Kimura, Opt. Rev. 7, 436 (2000).
[CrossRef]

Jacques, S. L.

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, Proc. SPIE 2681, 468 (1996).
[CrossRef]

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

S. L. Jacques, I. S. Saidi, and F. K. Tittel, Proc. SPIE 2128, 231 (1994).
[CrossRef]

Kimura, G.

T. Iwai and G. Kimura, Opt. Rev. 7, 436 (2000).
[CrossRef]

Mantsch, H. H.

M. G. Sowa, J. R. Payette, M. D. Hewko, and H. H. Mantsch, J. Biomed. Opt. 4, 474 (1999).
[CrossRef] [PubMed]

Mikic, B. B.

B. P. Payne, V. Venugopalan, B. B. Miki?, and N. S. Nishioka, J. Biomed. Opt. 8, 273 (2003).
[CrossRef] [PubMed]

Mishina, H.

I. Nishidate, Y. Aizu, and H. Mishina, J. Biomed. Opt. 9, 700 (2004).
[CrossRef] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, Opt. Rev. 10, 427 (2003).
[CrossRef]

Nishidate, I.

I. Nishidate, Y. Aizu, and H. Mishina, J. Biomed. Opt. 9, 700 (2004).
[CrossRef] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, Opt. Rev. 10, 427 (2003).
[CrossRef]

Nishioka, N. S.

B. P. Payne, V. Venugopalan, B. B. Miki?, and N. S. Nishioka, J. Biomed. Opt. 8, 273 (2003).
[CrossRef] [PubMed]

Payette, J. R.

M. G. Sowa, J. R. Payette, M. D. Hewko, and H. H. Mantsch, J. Biomed. Opt. 4, 474 (1999).
[CrossRef] [PubMed]

Payne, B. P.

B. P. Payne, V. Venugopalan, B. B. Miki?, and N. S. Nishioka, J. Biomed. Opt. 8, 273 (2003).
[CrossRef] [PubMed]

Saidi, I. S.

S. L. Jacques, I. S. Saidi, and F. K. Tittel, Proc. SPIE 2128, 231 (1994).
[CrossRef]

Schwartz, J. A.

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, Proc. SPIE 2681, 468 (1996).
[CrossRef]

Sowa, M. G.

M. G. Sowa, J. R. Payette, M. D. Hewko, and H. H. Mantsch, J. Biomed. Opt. 4, 474 (1999).
[CrossRef] [PubMed]

Tittel, F. K.

S. L. Jacques, I. S. Saidi, and F. K. Tittel, Proc. SPIE 2128, 231 (1994).
[CrossRef]

Tunnell, J. W.

Venugopalan, V.

B. P. Payne, V. Venugopalan, B. B. Miki?, and N. S. Nishioka, J. Biomed. Opt. 8, 273 (2003).
[CrossRef] [PubMed]

Wang, L. V.

Wang, L.-H.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

Zheng, L.-Q.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Comput. Methods Programs Biomed. (1)

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

M. G. Sowa, J. R. Payette, M. D. Hewko, and H. H. Mantsch, J. Biomed. Opt. 4, 474 (1999).
[CrossRef] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, J. Biomed. Opt. 9, 700 (2004).
[CrossRef] [PubMed]

B. P. Payne, V. Venugopalan, B. B. Miki?, and N. S. Nishioka, J. Biomed. Opt. 8, 273 (2003).
[CrossRef] [PubMed]

Opt. Rev. (2)

T. Iwai and G. Kimura, Opt. Rev. 7, 436 (2000).
[CrossRef]

I. Nishidate, Y. Aizu, and H. Mishina, Opt. Rev. 10, 427 (2003).
[CrossRef]

Proc. SPIE (2)

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, Proc. SPIE 2681, 468 (1996).
[CrossRef]

S. L. Jacques, I. S. Saidi, and F. K. Tittel, Proc. SPIE 2128, 231 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Concept of the method: (a) multilayered skin tissue model and (b) dependence of O D 420 , O D 585 , and their ratio r on depth d, derived by the Monte Carlo simulation.

Fig. 2
Fig. 2

Measuring apparatus for the method.

Fig. 3
Fig. 3

Depth images of (a) oxygenated and (b) deoxygenated blood regions for d = 2.0 mm and oxygenated blood regions for d values of (c) 1.5, (d) 2.5, and (e) 3.0 mm. The scale bar in (a) is 6.0 mm.

Fig. 4
Fig. 4

Reflectance images at (a) 420 and (b) 585 nm and (c) the depth image and (d) its topographic plot of veins in the human forearm. Dotted curve in (c) shows the rough outline of veins. The scale bar in (c) is 5.0 mm.

Tables (1)

Tables Icon

Table 1 Optical Prameters Used in the Monte Carlo simulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

O D λ = C m e m λ l e λ + C b e b λ l d λ + O D 0 λ ,
C m = a m 1 O D 420 + a m 2 O D 585 + a m 0 ,
C b = a b 1 O D 420 + a b 2 O D 585 + a b 0 ,
d ( r ) = t ln [ ( r r 0 ) A ] .

Metrics