Abstract

The effects of repeating thickness periods on stress are studied in ZrO2SiO2 multilayers deposited by electron-beam evaporation on BK7 glass and fused-silica substrates. The results show that the residual stress is compressive and decreases with an increase of the periods of repeating thickness in the ZrO2SiO2 multilayers. At the same time, the residual stress in multilayers deposited on BK7 glass is less than that of samples deposited on fused silica. The variation of the microstructure examined by x-ray diffraction shows that microscopic deformation does not correspond to macroscopic stress, which may be due to variation of the interface stress.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Windt, W. L. Brown, and C. A. Volkert, J. Appl. Phys. 78, 2423 (1995).
    [CrossRef]
  2. J. F. Geisz, T. F. Kuech, and M. G. Lagally, J. Appl. Phys. 75, 1530 (1994).
    [CrossRef]
  3. H. Windischmann, J. Vac. Sci. Technol. A 9, 2431 (1991).
    [CrossRef]
  4. F. K. Reinhart and R. A. Logan, J. Appl. Phys. 44, 3171 (1973).
    [CrossRef]
  5. K. O. Schweitz, J. Bottiger, and J. Chevallier, J. Appl. Phys. 88, 1401 (2000).
    [CrossRef]
  6. S. Labat, F. Bocquet, B. Gilles, and O. Thomas, Scr. Mater. 50, 717 (2004).
    [CrossRef]
  7. J. W. Cahn and F. Larche, Acta Metall. 30, 51 (1982).
    [CrossRef]
  8. J. A. Rund, A. Witvrouw, and F. Spaepen, J. Appl. Phys. 74, 2517 (1993).
    [CrossRef]
  9. S. Shao, Z. Fan, J. Shao, and H. He, Thin Solid Films 445, 59 (2003).
    [CrossRef]
  10. S. Y. Shao, G. L. Tian, Z. X. Fan, and J. D. Shao, Acta Opt. Sin. 25, 126 (2005) (in Chinese).
  11. R. C. Cammarata and K. Sieradzki, Appl. Phys. Lett. 55, 1197 (1989).
    [CrossRef]

2005 (1)

S. Y. Shao, G. L. Tian, Z. X. Fan, and J. D. Shao, Acta Opt. Sin. 25, 126 (2005) (in Chinese).

2004 (1)

S. Labat, F. Bocquet, B. Gilles, and O. Thomas, Scr. Mater. 50, 717 (2004).
[CrossRef]

2003 (1)

S. Shao, Z. Fan, J. Shao, and H. He, Thin Solid Films 445, 59 (2003).
[CrossRef]

2000 (1)

K. O. Schweitz, J. Bottiger, and J. Chevallier, J. Appl. Phys. 88, 1401 (2000).
[CrossRef]

1995 (1)

D. L. Windt, W. L. Brown, and C. A. Volkert, J. Appl. Phys. 78, 2423 (1995).
[CrossRef]

1994 (1)

J. F. Geisz, T. F. Kuech, and M. G. Lagally, J. Appl. Phys. 75, 1530 (1994).
[CrossRef]

1993 (1)

J. A. Rund, A. Witvrouw, and F. Spaepen, J. Appl. Phys. 74, 2517 (1993).
[CrossRef]

1991 (1)

H. Windischmann, J. Vac. Sci. Technol. A 9, 2431 (1991).
[CrossRef]

1989 (1)

R. C. Cammarata and K. Sieradzki, Appl. Phys. Lett. 55, 1197 (1989).
[CrossRef]

1982 (1)

J. W. Cahn and F. Larche, Acta Metall. 30, 51 (1982).
[CrossRef]

1973 (1)

F. K. Reinhart and R. A. Logan, J. Appl. Phys. 44, 3171 (1973).
[CrossRef]

Bocquet, F.

S. Labat, F. Bocquet, B. Gilles, and O. Thomas, Scr. Mater. 50, 717 (2004).
[CrossRef]

Bottiger, J.

K. O. Schweitz, J. Bottiger, and J. Chevallier, J. Appl. Phys. 88, 1401 (2000).
[CrossRef]

Brown, W. L.

D. L. Windt, W. L. Brown, and C. A. Volkert, J. Appl. Phys. 78, 2423 (1995).
[CrossRef]

Cahn, J. W.

J. W. Cahn and F. Larche, Acta Metall. 30, 51 (1982).
[CrossRef]

Cammarata, R. C.

R. C. Cammarata and K. Sieradzki, Appl. Phys. Lett. 55, 1197 (1989).
[CrossRef]

Chevallier, J.

K. O. Schweitz, J. Bottiger, and J. Chevallier, J. Appl. Phys. 88, 1401 (2000).
[CrossRef]

Fan, Z.

S. Shao, Z. Fan, J. Shao, and H. He, Thin Solid Films 445, 59 (2003).
[CrossRef]

Fan, Z. X.

S. Y. Shao, G. L. Tian, Z. X. Fan, and J. D. Shao, Acta Opt. Sin. 25, 126 (2005) (in Chinese).

Geisz, J. F.

J. F. Geisz, T. F. Kuech, and M. G. Lagally, J. Appl. Phys. 75, 1530 (1994).
[CrossRef]

Gilles, B.

S. Labat, F. Bocquet, B. Gilles, and O. Thomas, Scr. Mater. 50, 717 (2004).
[CrossRef]

He, H.

S. Shao, Z. Fan, J. Shao, and H. He, Thin Solid Films 445, 59 (2003).
[CrossRef]

Kuech, T. F.

J. F. Geisz, T. F. Kuech, and M. G. Lagally, J. Appl. Phys. 75, 1530 (1994).
[CrossRef]

Labat, S.

S. Labat, F. Bocquet, B. Gilles, and O. Thomas, Scr. Mater. 50, 717 (2004).
[CrossRef]

Lagally, M. G.

J. F. Geisz, T. F. Kuech, and M. G. Lagally, J. Appl. Phys. 75, 1530 (1994).
[CrossRef]

Larche, F.

J. W. Cahn and F. Larche, Acta Metall. 30, 51 (1982).
[CrossRef]

Logan, R. A.

F. K. Reinhart and R. A. Logan, J. Appl. Phys. 44, 3171 (1973).
[CrossRef]

Reinhart, F. K.

F. K. Reinhart and R. A. Logan, J. Appl. Phys. 44, 3171 (1973).
[CrossRef]

Rund, J. A.

J. A. Rund, A. Witvrouw, and F. Spaepen, J. Appl. Phys. 74, 2517 (1993).
[CrossRef]

Schweitz, K. O.

K. O. Schweitz, J. Bottiger, and J. Chevallier, J. Appl. Phys. 88, 1401 (2000).
[CrossRef]

Shao, J.

S. Shao, Z. Fan, J. Shao, and H. He, Thin Solid Films 445, 59 (2003).
[CrossRef]

Shao, J. D.

S. Y. Shao, G. L. Tian, Z. X. Fan, and J. D. Shao, Acta Opt. Sin. 25, 126 (2005) (in Chinese).

Shao, S.

S. Shao, Z. Fan, J. Shao, and H. He, Thin Solid Films 445, 59 (2003).
[CrossRef]

Shao, S. Y.

S. Y. Shao, G. L. Tian, Z. X. Fan, and J. D. Shao, Acta Opt. Sin. 25, 126 (2005) (in Chinese).

Sieradzki, K.

R. C. Cammarata and K. Sieradzki, Appl. Phys. Lett. 55, 1197 (1989).
[CrossRef]

Spaepen, F.

J. A. Rund, A. Witvrouw, and F. Spaepen, J. Appl. Phys. 74, 2517 (1993).
[CrossRef]

Thomas, O.

S. Labat, F. Bocquet, B. Gilles, and O. Thomas, Scr. Mater. 50, 717 (2004).
[CrossRef]

Tian, G. L.

S. Y. Shao, G. L. Tian, Z. X. Fan, and J. D. Shao, Acta Opt. Sin. 25, 126 (2005) (in Chinese).

Volkert, C. A.

D. L. Windt, W. L. Brown, and C. A. Volkert, J. Appl. Phys. 78, 2423 (1995).
[CrossRef]

Windischmann, H.

H. Windischmann, J. Vac. Sci. Technol. A 9, 2431 (1991).
[CrossRef]

Windt, D. L.

D. L. Windt, W. L. Brown, and C. A. Volkert, J. Appl. Phys. 78, 2423 (1995).
[CrossRef]

Witvrouw, A.

J. A. Rund, A. Witvrouw, and F. Spaepen, J. Appl. Phys. 74, 2517 (1993).
[CrossRef]

Acta Metall. (1)

J. W. Cahn and F. Larche, Acta Metall. 30, 51 (1982).
[CrossRef]

Acta Opt. Sin. (1)

S. Y. Shao, G. L. Tian, Z. X. Fan, and J. D. Shao, Acta Opt. Sin. 25, 126 (2005) (in Chinese).

Appl. Phys. Lett. (1)

R. C. Cammarata and K. Sieradzki, Appl. Phys. Lett. 55, 1197 (1989).
[CrossRef]

J. Appl. Phys. (5)

J. A. Rund, A. Witvrouw, and F. Spaepen, J. Appl. Phys. 74, 2517 (1993).
[CrossRef]

D. L. Windt, W. L. Brown, and C. A. Volkert, J. Appl. Phys. 78, 2423 (1995).
[CrossRef]

J. F. Geisz, T. F. Kuech, and M. G. Lagally, J. Appl. Phys. 75, 1530 (1994).
[CrossRef]

F. K. Reinhart and R. A. Logan, J. Appl. Phys. 44, 3171 (1973).
[CrossRef]

K. O. Schweitz, J. Bottiger, and J. Chevallier, J. Appl. Phys. 88, 1401 (2000).
[CrossRef]

J. Vac. Sci. Technol. A (1)

H. Windischmann, J. Vac. Sci. Technol. A 9, 2431 (1991).
[CrossRef]

Scr. Mater. (1)

S. Labat, F. Bocquet, B. Gilles, and O. Thomas, Scr. Mater. 50, 717 (2004).
[CrossRef]

Thin Solid Films (1)

S. Shao, Z. Fan, J. Shao, and H. He, Thin Solid Films 445, 59 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Variation of residual stress with an increase in periods of a Zr O 2 Si O 2 alternative ML deposited on different substrates.

Fig. 2
Fig. 2

XRD spectra of the MLs deposited on a BK7 glass substrate with different repeating thickness periods.

Fig. 3
Fig. 3

XRD spectra of the MLs deposited on a fused-silica substrate with different repeating thickness periods.

Tables (1)

Tables Icon

Table 1 Interplanar Distance and Crystallite Size Versus Periods of the Repeating Thickness

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ = E s 6 ( 1 v s ) t s 2 t f ( 1 R 2 1 R 1 ) ,
1 6 Y S d s 2 d f 1 R + 2 3 d s R ( d A λ Y A + d B λ Y B ) + ( d A λ Y A ε 0 A + d B λ Y B ε 0 B ) + N d f ( f A + f B ) = 0 ,

Metrics