Abstract

Optical fibers are expected to play a role in chip-level and board-level optical interconnects because of limitations on the bandwidth and level of integration of electrical interconnects. Therefore, methods are needed to couple optical fibers directly to waveguides on chips and on boards. We demonstrate optical-fiber-to-waveguide coupling using carbon-dioxide laser-induced long-period fiber gratings (LPFGs). Such gratings can be written in standard fiber and offer wavelength multiplexing–demultiplexing performance. The coupler fabrication process and the characterization apparatus are presented. The operation and the wavelength response of a LPFG-based optical-fiber-to-waveguide directional coupler are demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, Proc. IEEE 88, 728 (2000).
    [CrossRef]
  2. N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
    [CrossRef]
  3. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, J. Lightwave Technol. 22, 2168 (2004).
    [CrossRef]
  4. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Madhavan, A. F. J. Levi, and D. W. Dolfi, J. Lightwave Technol. 22, 2043 (2004).
    [CrossRef]
  5. T. S. Barry, D. L. Rode, and R. R. Krchnavek, IEEE Trans. Compon., Packag. Manuf. Technol. Part B 20, 225 (1997).
    [CrossRef]
  6. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef] [PubMed]
  7. S. Lu, Y.-B. Yan, D.-E. Yi, G.-F. Jin, and M.-X. Wu, Opt. Laser Technol. 35, 369 (2003).
    [CrossRef]
  8. G. Meltz, W. W. Morey, and W. H. Glenn, in Digest of Conference on Optical Fiber Communication (Optical Society of America, 1990), p. 24.
  9. H. S. Ryu, Y. Park, S. T. Oh, Y. Chung, and D. Y. Kim, Opt. Lett. 28, 155 (2003).
    [CrossRef] [PubMed]
  10. K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
    [CrossRef]
  11. Y. Li and T. Erdogan, Opt. Commun. 183, 377 (2000).
    [CrossRef]
  12. W. T. Chen and L. A. Wang, IEEE Photon. Technol. Lett. 12, 501 (2000).
    [CrossRef]
  13. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
    [CrossRef]
  14. A. V. Mulé, ‘‘Volume grating coupler-based optical interconnect technologies for polylithic gigascale interaction,’’ Ph.D. dissertation (Georgia Institute of Technology, 2004).

2004 (3)

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Madhavan, A. F. J. Levi, and D. W. Dolfi, J. Lightwave Technol. 22, 2043 (2004).
[CrossRef]

C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, J. Lightwave Technol. 22, 2168 (2004).
[CrossRef]

2003 (3)

2000 (4)

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
[CrossRef]

Y. Li and T. Erdogan, Opt. Commun. 183, 377 (2000).
[CrossRef]

W. T. Chen and L. A. Wang, IEEE Photon. Technol. Lett. 12, 501 (2000).
[CrossRef]

D. A. B. Miller, Proc. IEEE 88, 728 (2000).
[CrossRef]

1998 (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

1997 (1)

T. S. Barry, D. L. Rode, and R. R. Krchnavek, IEEE Trans. Compon., Packag. Manuf. Technol. Part B 20, 225 (1997).
[CrossRef]

Ali, M. E.

Almeida, V. R.

Barry, T. S.

T. S. Barry, D. L. Rode, and R. R. Krchnavek, IEEE Trans. Compon., Packag. Manuf. Technol. Part B 20, 225 (1997).
[CrossRef]

Brooke, M. A.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Chellapa, A.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Chen, R. T.

Chen, W. T.

W. T. Chen and L. A. Wang, IEEE Photon. Technol. Lett. 12, 501 (2000).
[CrossRef]

Chiang, K. S.

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
[CrossRef]

Cho, S.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Choi, C.

Choi, J.

Chung, Y.

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Dolfi, D. W.

Erdogan, T.

Y. Li and T. Erdogan, Opt. Commun. 183, 377 (2000).
[CrossRef]

Flower, G. M.

Gaylord, T. K.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Geddis, D. L.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Glenn, W. H.

G. Meltz, W. W. Morey, and W. H. Glenn, in Digest of Conference on Optical Fiber Communication (Optical Society of America, 1990), p. 24.

Glytsis, E. N.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Haas, D.

Hall, J.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Jin, G.-F.

S. Lu, Y.-B. Yan, D.-E. Yi, G.-F. Jin, and M.-X. Wu, Opt. Laser Technol. 35, 369 (2003).
[CrossRef]

Jokerst, N.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Kim, D. Y.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Krchnavek, R. R.

T. S. Barry, D. L. Rode, and R. R. Krchnavek, IEEE Trans. Compon., Packag. Manuf. Technol. Part B 20, 225 (1997).
[CrossRef]

Lemoff, B. E.

Levi, A. F. J.

Li, S.

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
[CrossRef]

Li, Y.

Y. Li and T. Erdogan, Opt. Commun. 183, 377 (2000).
[CrossRef]

Lin, L.

Lipson, M.

Liu, Y.

Lu, S.

S. Lu, Y.-B. Yan, D.-E. Yi, G.-F. Jin, and M.-X. Wu, Opt. Laser Technol. 35, 369 (2003).
[CrossRef]

Madhavan, B.

Magera, J.

Meltz, G.

G. Meltz, W. W. Morey, and W. H. Glenn, in Digest of Conference on Optical Fiber Communication (Optical Society of America, 1990), p. 24.

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, Proc. IEEE 88, 728 (2000).
[CrossRef]

Morey, W. W.

G. Meltz, W. W. Morey, and W. H. Glenn, in Digest of Conference on Optical Fiber Communication (Optical Society of America, 1990), p. 24.

Mulé, A. V.

A. V. Mulé, ‘‘Volume grating coupler-based optical interconnect technologies for polylithic gigascale interaction,’’ Ph.D. dissertation (Georgia Institute of Technology, 2004).

Ng, M. N.

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
[CrossRef]

Nonaka, T.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Oh, S. T.

Panepucci, R. R.

Panotopoulos, G.

Park, Y.

Rode, D. L.

T. S. Barry, D. L. Rode, and R. R. Krchnavek, IEEE Trans. Compon., Packag. Manuf. Technol. Part B 20, 225 (1997).
[CrossRef]

Ryu, H. S.

Shin, J.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Suzuki, T.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Villalaz, R. A.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Vrazel, M.

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

Wang, L.

Wang, L. A.

W. T. Chen and L. A. Wang, IEEE Photon. Technol. Lett. 12, 501 (2000).
[CrossRef]

Wu, M.-X.

S. Lu, Y.-B. Yan, D.-E. Yi, G.-F. Jin, and M.-X. Wu, Opt. Laser Technol. 35, 369 (2003).
[CrossRef]

Yan, Y.-B.

S. Lu, Y.-B. Yan, D.-E. Yi, G.-F. Jin, and M.-X. Wu, Opt. Laser Technol. 35, 369 (2003).
[CrossRef]

Yi, D.-E.

S. Lu, Y.-B. Yan, D.-E. Yi, G.-F. Jin, and M.-X. Wu, Opt. Laser Technol. 35, 369 (2003).
[CrossRef]

Electron. Lett. (2)

K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. T. Chen and L. A. Wang, IEEE Photon. Technol. Lett. 12, 501 (2000).
[CrossRef]

IEEE Trans. Adv. Packag. (1)

N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
[CrossRef]

IEEE Trans. Compon., Packag. Manuf. Technol. Part B (1)

T. S. Barry, D. L. Rode, and R. R. Krchnavek, IEEE Trans. Compon., Packag. Manuf. Technol. Part B 20, 225 (1997).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

Y. Li and T. Erdogan, Opt. Commun. 183, 377 (2000).
[CrossRef]

Opt. Laser Technol. (1)

S. Lu, Y.-B. Yan, D.-E. Yi, G.-F. Jin, and M.-X. Wu, Opt. Laser Technol. 35, 369 (2003).
[CrossRef]

Opt. Lett. (2)

Proc. IEEE (1)

D. A. B. Miller, Proc. IEEE 88, 728 (2000).
[CrossRef]

Other (2)

A. V. Mulé, ‘‘Volume grating coupler-based optical interconnect technologies for polylithic gigascale interaction,’’ Ph.D. dissertation (Georgia Institute of Technology, 2004).

G. Meltz, W. W. Morey, and W. H. Glenn, in Digest of Conference on Optical Fiber Communication (Optical Society of America, 1990), p. 24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of a LPFG-based optical-fiber-to-waveguide coupler. Light traveling in the core of the fiber is coupled into a cladding-guided mode by the LPFG. A portion of the light in the cladding mode is then coupled into the waveguide.

Fig. 2
Fig. 2

Reflected-light image of the waveguide endface. The substrate containing the waveguides is cleaved to produce a smooth endface to facilitate observation of light emerging from the waveguide.

Fig. 3
Fig. 3

Light observed emerging from the waveguide endface for an optical fiber positioned on top of the waveguide (a) without a LPFG and (b) with a C O 2 -laser-induced LPFG. The laser source wavelength is 1540 nm .

Fig. 4
Fig. 4

Normalized summation of image gray-scale values over the waveguide region of light coupled into the channel waveguide for each test wavelength (filled circles) and the fitted coupling spectrum for a LPFG surrounded by index-matching gel (dashed curve). The close agreement between the two indicates that the wavelength response of the coupler follows from the wavelength characteristics of the LPFG.

Metrics