Abstract

The effect of optical nonlinearities on the fiber transmission of differential polarization-phase-shift keying (DPolPSK) signals is analyzed. For single-channel transmission, the effect of self-phase modulation depends on the order of the DPolPSK. In dense wavelength-division multiplexing, the dominant nonlinear effect is cross-phase-modulation-induced polarization scattering, which exists even if there is no intensity noise. It is found that differential detection greatly reduces the effect of polarization scattering in DPolPSK. Unlike in conventional polarization-division-multiplexed intensity-modulated direct-detection systems, the effect of polarization scattering strongly depends on the channel spacing and bit rate.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck and P. J. Winzer, J. Lightwave Technol. 23, 115 (2005).
    [CrossRef]
  2. P. S. Cho and J. B. Khurgin, IEEE Photon. Technol. Lett. 15, 162 (2003).
    [CrossRef]
  3. R. A. Griffin and A. C. Carter, in Optical Fiber Communication Conference (OSA), Postconference Digest, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), p. 367.
  4. C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
    [CrossRef]
  5. Y. Han and G. Li, Opt. Express 12, 5821 (2004).
    [CrossRef] [PubMed]
  6. Y. Han and G. Li, Opt. Express 13, 2761 (2005).
    [CrossRef] [PubMed]
  7. J. P. Gordon and L. F. Mollenauer, Opt. Lett. 15, 1351 (1990).
    [CrossRef] [PubMed]
  8. H. Kim, J. Lightwave Technol. 21, 1770 (2003).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  10. L. F. Mollenauer, J. P. Gordon, and F. Heismann, Opt. Lett. 20, 2060 (1995).
    [CrossRef] [PubMed]

2005 (2)

2004 (1)

2003 (3)

P. S. Cho and J. B. Khurgin, IEEE Photon. Technol. Lett. 15, 162 (2003).
[CrossRef]

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
[CrossRef]

H. Kim, J. Lightwave Technol. 21, 1770 (2003).
[CrossRef]

1995 (1)

1990 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Carter, A. C.

R. A. Griffin and A. C. Carter, in Optical Fiber Communication Conference (OSA), Postconference Digest, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), p. 367.

Cho, P. S.

P. S. Cho and J. B. Khurgin, IEEE Photon. Technol. Lett. 15, 162 (2003).
[CrossRef]

Gnauck, A. H.

Gordon, J. P.

Gottwald, E.

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
[CrossRef]

Griffin, R. A.

R. A. Griffin and A. C. Carter, in Optical Fiber Communication Conference (OSA), Postconference Digest, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), p. 367.

Han, Y.

Hecker-Denschlag, N.

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
[CrossRef]

Heismann, F.

Khurgin, J. B.

P. S. Cho and J. B. Khurgin, IEEE Photon. Technol. Lett. 15, 162 (2003).
[CrossRef]

Kim, H.

Krummrich, P.

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
[CrossRef]

Lankl, B.

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
[CrossRef]

Leibrich, J.

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
[CrossRef]

Li, G.

Mollenauer, L. F.

Rosenkranz, W.

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
[CrossRef]

Schmidt, E.-D.

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
[CrossRef]

Winzer, P. J.

Wree, C.

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. S. Cho and J. B. Khurgin, IEEE Photon. Technol. Lett. 15, 162 (2003).
[CrossRef]

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.-D. Schmidt, B. Lankl, and W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303 (2003).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Lett. (2)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

R. A. Griffin and A. C. Carter, in Optical Fiber Communication Conference (OSA), Postconference Digest, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), p. 367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical eye diagrams of (a) 4-DPolPSK after 23 spans of transmission and (b) 16-DPolPSK after 10 spans of transmission at 10 G symbols s in the nonlinear regime.

Fig. 2
Fig. 2

Polarization scattering in (a) a single channel and (b) WDM 4-DPolPSK after 10 spans of transmission at 10 G symbols s with a 25 GHz channel spacing. The SOP of the symbols represented on the Poincaré sphere is projected on a two-dimensional plane.

Fig. 3
Fig. 3

Eye-Q factor as a function of power per channel in (a) a single channel after 23 spans of transmission and (b) WDM 4-DPolPSK after 10 spans of transmission.

Fig. 4
Fig. 4

Eye-Q factor as a function of power per channel in (a) a 10 G symbol s 25 GHz channel spacing and (b) 20 G symbol s 50 GHz channel spacing 16-DPolPSK system after 10 spans of transmission.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

v ( t ) = P ( t ) cos [ θ 1 ( t ) + Δ θ D ] + 2 P ( t ) cos [ τ θ 2 ( t ) + Δ θ D ] ,
v = Re { ( J i + Λ i ) * ( J i + 1 + Λ i + 1 ) } Re { J i * J i + 1 } + Re { J i * Λ i + 1 + Λ i * J i + 1 } ,
U = [ 1 , 0 ; 0 , exp ( j ϕ ) ]
R ( θ ) [ U R ( θ ) ]
R ( θ ) = [ cos θ , sin θ ; sin θ , cos θ ] ,
v = Re { J i * U j * U j + n * U j + n + 1 U j + 1 J i + 1 } Re { J i * U j * U j + n + 1 J i + 1 } .
U = I + Δ , where Δ = [ 0 , 0 ; 0 , exp ( j ϕ ) 1 ] ,
U j U j + 1 = ( I + Δ ) R ( θ ) ( I + Δ ) R ( θ ) I + Δ + R ( θ ) Δ R ( θ ) R ( θ ) ( I + Δ ) R ( θ ) ( I + Δ ) = U j + 1 U j

Metrics