Abstract

The design and fabrication of a miniature fiber Fabry–Perot pressure sensor with a diameter of 125μm are presented. The essential element in the process is a thin SiO2 diaphragm that is fusion spliced at the hollow end of an optical fiber. Good repeatability and high sensitivity of the sensor are achieved by on-line tuning of the diaphragm thickness during the sensor fabrication process. Various sensor prototypes were fabricated, demonstrating pressure ranges of from 0 to 40 kPa to 0 to 1 MPa. The maximum achieved sensitivity was 1.1rad40kPa at 1550 nm, and a pressure resolution of 300 Pa was demonstrated in practice. The presented design and fabrication technique offers a means of simple and low-cost disposable pressure sensor production.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Katsumata, Y. Haga, K. Minami, and M. Esashi, Trans. Inst. Electr. Eng. Jpn. Sect. E 120, 58 (2000).
  2. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
    [CrossRef]
  3. E. Cibula and D. Donlagic, Appl. Opt. 44, 2736 (2005).
    [CrossRef] [PubMed]
  4. Y. Zhu and A. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
    [CrossRef]
  5. T. Bae, R. A. Atkins, H. F. Taylor, and W. N. Gibler, Appl. Opt. 42, 1003 (2003).
    [CrossRef] [PubMed]
  6. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, Opt. Lett. 18, 1973 (1993).
    [CrossRef] [PubMed]
  7. S. Mononobe and M. Ohtsu, J. Lightwave Technol. 14, 2231 (1996).
    [CrossRef]

2005 (2)

Y. Zhu and A. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

E. Cibula and D. Donlagic, Appl. Opt. 44, 2736 (2005).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

2000 (1)

T. Katsumata, Y. Haga, K. Minami, and M. Esashi, Trans. Inst. Electr. Eng. Jpn. Sect. E 120, 58 (2000).

1996 (1)

S. Mononobe and M. Ohtsu, J. Lightwave Technol. 14, 2231 (1996).
[CrossRef]

1993 (1)

Abeysinghe, D. C.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

Atkins, R. A.

Bae, T.

Berkoff, T. A.

Boyd, J. T.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

Brennan, D. D.

Cibula, E.

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

Donlagic, D.

Esashi, M.

T. Katsumata, Y. Haga, K. Minami, and M. Esashi, Trans. Inst. Electr. Eng. Jpn. Sect. E 120, 58 (2000).

Friebele, E. J.

Gibler, W. N.

Haga, Y.

T. Katsumata, Y. Haga, K. Minami, and M. Esashi, Trans. Inst. Electr. Eng. Jpn. Sect. E 120, 58 (2000).

Jackson, H. E.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

Katsumata, T.

T. Katsumata, Y. Haga, K. Minami, and M. Esashi, Trans. Inst. Electr. Eng. Jpn. Sect. E 120, 58 (2000).

Kersey, A. D.

Minami, K.

T. Katsumata, Y. Haga, K. Minami, and M. Esashi, Trans. Inst. Electr. Eng. Jpn. Sect. E 120, 58 (2000).

Mononobe, S.

S. Mononobe and M. Ohtsu, J. Lightwave Technol. 14, 2231 (1996).
[CrossRef]

Ohtsu, M.

S. Mononobe and M. Ohtsu, J. Lightwave Technol. 14, 2231 (1996).
[CrossRef]

Putman, M. A.

Sirkis, J. S.

Taylor, H. F.

Wang, A.

Y. Zhu and A. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

Zhu, Y.

Y. Zhu and A. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (2)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

Y. Zhu and A. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

J. Lightwave Technol. (1)

S. Mononobe and M. Ohtsu, J. Lightwave Technol. 14, 2231 (1996).
[CrossRef]

Opt. Lett. (1)

Trans. Inst. Electr. Eng. Jpn. Sect. E (1)

T. Katsumata, Y. Haga, K. Minami, and M. Esashi, Trans. Inst. Electr. Eng. Jpn. Sect. E 120, 58 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Pressure sensor with a SiO 2 diaphragm.

Fig. 2
Fig. 2

Fabrication procedure for the pressure sensor.

Fig. 3
Fig. 3

System for tuning pressure sensors.

Fig. 4
Fig. 4

Amplitude of the sensor phase change versus time during etching under 40 kPa pressure variation.

Fig. 5
Fig. 5

Experimental setup for pressure sensor evaluation.

Fig. 6
Fig. 6

Responses of pressure sensors for three different pressure ranges (a, 0–40 kPa; b, 0–200, kPa; c, 0–1 MPa).

Fig. 7
Fig. 7

Spectrum of reflected light from the sensors Fabry–Perot cavity

Metrics