Abstract

Permanent long-period gratings were written using arc discharges in two aluminosilicate fibers, one of which was doped with erbium. Reversible gratings were also mechanically induced in both fibers. The thermal behavior of the arc-induced gratings was investigated at up to 1100°C. It was found that the shift of the resonant wavelengths exhibited a well-defined linear dependence on temperature up to 700°C.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, IEEE Photon. Technol. Lett. 3, 118 (1991).
    [CrossRef]
  2. I.-B. Sohn and J.-W. Song, Opt. Commun. 236, 141 (2004).
    [CrossRef]
  3. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, Opt. Lett. 21, 336 (1996).
    [CrossRef] [PubMed]
  4. M. Harumoto, M. Shigehara, and H. Suganuma, J. Lightwave Technol. 20, 1027 (2002).
    [CrossRef]
  5. P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 9, 1343 (1997).
    [CrossRef]
  6. S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, 49 (2003).
    [CrossRef]
  7. R. Singh, Sunanda, and E. K. Sharma, Opt. Commun. 240, 123 (2004).
    [CrossRef]
  8. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, J. Lightwave Technol. 19, 1574 (2001).
    [CrossRef]
  9. G. Humbert and A. Malki, J. Opt. A Pure Appl. Opt. 4, 194 (2002).
    [CrossRef]
  10. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  11. G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, Opt. Commun. 220, 111 (2003).
    [CrossRef]
  12. A. D. Yablon, IEEE J. Sel. Top. Quantum Electron. 10, 300 (2004).
    [CrossRef]

2004 (3)

I.-B. Sohn and J.-W. Song, Opt. Commun. 236, 141 (2004).
[CrossRef]

R. Singh, Sunanda, and E. K. Sharma, Opt. Commun. 240, 123 (2004).
[CrossRef]

A. D. Yablon, IEEE J. Sel. Top. Quantum Electron. 10, 300 (2004).
[CrossRef]

2003 (2)

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, 49 (2003).
[CrossRef]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, Opt. Commun. 220, 111 (2003).
[CrossRef]

2002 (2)

2001 (1)

1997 (1)

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 9, 1343 (1997).
[CrossRef]

1996 (1)

1991 (1)

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, IEEE Photon. Technol. Lett. 3, 118 (1991).
[CrossRef]

Andrejco, M.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 9, 1343 (1997).
[CrossRef]

Bergano, N. S.

Davidson, C. R.

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

Dianov, E.

Espindola, R. P.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 9, 1343 (1997).
[CrossRef]

Fernandes, J. R. A.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, Opt. Commun. 220, 111 (2003).
[CrossRef]

Harumoto, M.

Humbert, G.

G. Humbert and A. Malki, J. Opt. A Pure Appl. Opt. 4, 194 (2002).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, 49 (2003).
[CrossRef]

Judkins, J. B.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 9, 1343 (1997).
[CrossRef]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, Opt. Lett. 21, 336 (1996).
[CrossRef] [PubMed]

Laming, R. I.

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, IEEE Photon. Technol. Lett. 3, 118 (1991).
[CrossRef]

Lemaire, P. J.

Malki, A.

G. Humbert and A. Malki, J. Opt. A Pure Appl. Opt. 4, 194 (2002).
[CrossRef]

Marques, P. V. S.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, Opt. Commun. 220, 111 (2003).
[CrossRef]

Morkel, P. R.

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, IEEE Photon. Technol. Lett. 3, 118 (1991).
[CrossRef]

Okhotnikov, O.

Payne, D. N.

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, IEEE Photon. Technol. Lett. 3, 118 (1991).
[CrossRef]

Pedrazzani, J. R.

Rego, G.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, Opt. Commun. 220, 111 (2003).
[CrossRef]

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, J. Lightwave Technol. 19, 1574 (2001).
[CrossRef]

Salgado, H. M.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, Opt. Commun. 220, 111 (2003).
[CrossRef]

Santos, J. L.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, Opt. Commun. 220, 111 (2003).
[CrossRef]

Sharma, E. K.

R. Singh, Sunanda, and E. K. Sharma, Opt. Commun. 240, 123 (2004).
[CrossRef]

Shigehara, M.

Singh, R.

R. Singh, Sunanda, and E. K. Sharma, Opt. Commun. 240, 123 (2004).
[CrossRef]

Sohn, I.-B.

I.-B. Sohn and J.-W. Song, Opt. Commun. 236, 141 (2004).
[CrossRef]

Song, J.-W.

I.-B. Sohn and J.-W. Song, Opt. Commun. 236, 141 (2004).
[CrossRef]

Suganuma, H.

Sulimov, V.

Sunanda,

R. Singh, Sunanda, and E. K. Sharma, Opt. Commun. 240, 123 (2004).
[CrossRef]

Tachibana, M.

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, IEEE Photon. Technol. Lett. 3, 118 (1991).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, 49 (2003).
[CrossRef]

Vengsarkar, A. M.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 9, 1343 (1997).
[CrossRef]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, Opt. Lett. 21, 336 (1996).
[CrossRef] [PubMed]

Wysocki, P. F.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 9, 1343 (1997).
[CrossRef]

Yablon, A. D.

A. D. Yablon, IEEE J. Sel. Top. Quantum Electron. 10, 300 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Yablon, IEEE J. Sel. Top. Quantum Electron. 10, 300 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, IEEE Photon. Technol. Lett. 3, 118 (1991).
[CrossRef]

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 9, 1343 (1997).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A Pure Appl. Opt. (1)

G. Humbert and A. Malki, J. Opt. A Pure Appl. Opt. 4, 194 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, 49 (2003).
[CrossRef]

Opt. Commun. (3)

R. Singh, Sunanda, and E. K. Sharma, Opt. Commun. 240, 123 (2004).
[CrossRef]

I.-B. Sohn and J.-W. Song, Opt. Commun. 236, 141 (2004).
[CrossRef]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, Opt. Commun. 220, 111 (2003).
[CrossRef]

Opt. Lett. (1)

Other (1)

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Refractive index profiles of the aluminosilicate fibers.

Fig. 2
Fig. 2

Transmission spectra of two 400 μ m LPFGs that were arc induced in both fibers (the arrows indicate coupling to cladding modes of the same order).

Fig. 3
Fig. 3

Transmission spectra of two 400 μ m MLPFGs (for the Al fiber, coupling to the first cladding mode occurs at 1502 nm ).

Fig. 4
Fig. 4

Temperature dependence of two resonant wavelengths belonging to LPFGs written in aluminosilicate fibers.

Metrics