Abstract

We demonstrate a new class of all-fiber frequency comb filter that exhibits unprecedented capabilities for tuning the comb’s free spectral range (FSR). The filter exploits a spectral Talbot-like effect in a sampled chirped fiber Bragg grating. The FSR is tailored by application of a linear strain gradient to modify the relative phase between the samples. The FSR can be tuned in discrete steps that correspond to the nominal value of the FSR of the sampled unchirped grating divided by integer factors. In this demonstration the FSR is varied from 51to3.9GHz.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
    [CrossRef]
  2. H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, J. Lightwave Technol. 15, 2074 (2003).
  3. Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, Electron. Lett. 38, 1572 (2002).
    [CrossRef]
  4. C. Wang, J. Azaña, and L. R. Chen, Opt. Lett. 15, 1590 (2004).
    [CrossRef]
  5. J. Azaña, C. Wang, and L. R. Chen, “Spectral self-imaging phenomena in sampled Bragg gratings,” J. Opt. Soc. Am. B (to be published).
  6. N. K. Berger, B. Levit, A. Bekker, and B. Fischer, IEEE Photon. Technol. Lett. 16, 1855 (2004).
    [CrossRef]
  7. T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
    [CrossRef]

2004

C. Wang, J. Azaña, and L. R. Chen, Opt. Lett. 15, 1590 (2004).
[CrossRef]

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, IEEE Photon. Technol. Lett. 16, 1855 (2004).
[CrossRef]

2003

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, J. Lightwave Technol. 15, 2074 (2003).

2002

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, Electron. Lett. 38, 1572 (2002).
[CrossRef]

1998

T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
[CrossRef]

1995

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Azaña, J.

C. Wang, J. Azaña, and L. R. Chen, Opt. Lett. 15, 1590 (2004).
[CrossRef]

J. Azaña, C. Wang, and L. R. Chen, “Spectral self-imaging phenomena in sampled Bragg gratings,” J. Opt. Soc. Am. B (to be published).

Bekker, A.

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, IEEE Photon. Technol. Lett. 16, 1855 (2004).
[CrossRef]

Bennion, I.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Berger, N. K.

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, IEEE Photon. Technol. Lett. 16, 1855 (2004).
[CrossRef]

Chen, L. R.

C. Wang, J. Azaña, and L. R. Chen, Opt. Lett. 15, 1590 (2004).
[CrossRef]

J. Azaña, C. Wang, and L. R. Chen, “Spectral self-imaging phenomena in sampled Bragg gratings,” J. Opt. Soc. Am. B (to be published).

Chotard, H.

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, Electron. Lett. 38, 1572 (2002).
[CrossRef]

Fischer, B.

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, IEEE Photon. Technol. Lett. 16, 1855 (2004).
[CrossRef]

Imai, T.

T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
[CrossRef]

Komukai, T.

T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
[CrossRef]

Levit, B.

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, IEEE Photon. Technol. Lett. 16, 1855 (2004).
[CrossRef]

Li, H.

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, J. Lightwave Technol. 15, 2074 (2003).

Li, Y.

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, J. Lightwave Technol. 15, 2074 (2003).

Mailloux, A.

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, Electron. Lett. 38, 1572 (2002).
[CrossRef]

Nakazawa, M.

T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
[CrossRef]

Painchaud, Y.

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, Electron. Lett. 38, 1572 (2002).
[CrossRef]

Poole, S. B.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Rothenberg, J. E.

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, J. Lightwave Technol. 15, 2074 (2003).

Sheng, Y.

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, J. Lightwave Technol. 15, 2074 (2003).

Sugden, K.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Town, G. E.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Vasseur, Y.

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, Electron. Lett. 38, 1572 (2002).
[CrossRef]

Wang, C.

C. Wang, J. Azaña, and L. R. Chen, Opt. Lett. 15, 1590 (2004).
[CrossRef]

J. Azaña, C. Wang, and L. R. Chen, “Spectral self-imaging phenomena in sampled Bragg gratings,” J. Opt. Soc. Am. B (to be published).

Williams, J. A. R.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Electron. Lett.

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, Electron. Lett. 38, 1572 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, IEEE Photon. Technol. Lett. 16, 1855 (2004).
[CrossRef]

T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
[CrossRef]

J. Lightwave Technol.

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, J. Lightwave Technol. 15, 2074 (2003).

Opt. Lett.

C. Wang, J. Azaña, and L. R. Chen, Opt. Lett. 15, 1590 (2004).
[CrossRef]

Other

J. Azaña, C. Wang, and L. R. Chen, “Spectral self-imaging phenomena in sampled Bragg gratings,” J. Opt. Soc. Am. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. (b) Local Bragg wavelength modification with respect to the unstrained state for several Talbot conditions. (c) Reflectivity of the unstrained grating. (d) Reflectivity when the nominal grating chirp is completely compensated for by the induced chirp.

Fig. 2
Fig. 2

(a) Reflectivity of the filter when the chirp is set to achieve the ( m = 2 ; s = 1 ) Talbot condition. (b) Reflectivity and group delay zoomed over four channels. (c) Reflectivity of the filter for m = 3 , 4 , 5 , 13 .

Tables (1)

Tables Icon

Table 1 Measured Talbot Conditions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C g = s m ( Λ 0 2 P 2 ) ,

Metrics