Abstract

The generation and characterization of femtosecond pulses at three independently tunable visible wavelengths is reported. Selected spectral portions of a common continuum generated in sapphire are amplified in noncollinear optical parametric amplifiers. The phase relation of the pulse trains is analyzed with a nonlinear interferometer based on coherent anti-Stokes Raman scattering and is found to be locked to better than 250mrad rms. Small spectral shifts of the pulses lead to interference behavior that is consistent with 1kHz frequency combs.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-resonant background suppression by destructive interference in coherent anti-Stokes Raman scattering spectroscopy

Stanislav O. Konorov, Michael W. Blades, and Robin F. B. Turner
Opt. Express 19(27) 25925-25934 (2011)

Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber

A. Abdolvand, A. M. Walser, M. Ziemienczuk, T. Nguyen, and P. St. J. Russell
Opt. Lett. 37(21) 4362-4364 (2012)

Generation of Raman solitons with a different relative phase by optical phase jump

Ruslan V. Chulkov, Alexander S. Grabtchikov, Victor A. Lisinetckii, Valentin A. Orlovich, and Oleg V. Chehlov
J. Opt. Soc. Am. B 24(11) 2829-2836 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription