Abstract

The generation and characterization of femtosecond pulses at three independently tunable visible wavelengths is reported. Selected spectral portions of a common continuum generated in sapphire are amplified in noncollinear optical parametric amplifiers. The phase relation of the pulse trains is analyzed with a nonlinear interferometer based on coherent anti-Stokes Raman scattering and is found to be locked to better than 250mrad rms. Small spectral shifts of the pulses lead to interference behavior that is consistent with 1kHz frequency combs.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
    [CrossRef]
  2. T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
    [CrossRef]
  3. P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, Opt. Lett. 28, 185 (2003).
    [CrossRef] [PubMed]
  4. J. Stenger and H. R. Telle, Proc. SPIE 4269, 72 (2001).
    [CrossRef]
  5. N. Haverkamp and H. R. Telle, Opt. Express 12, 582 (2004).
    [CrossRef] [PubMed]
  6. M. Bellini and T. W. Hänsch, Opt. Lett. 25, 1049 (2000).
    [CrossRef]
  7. C. Corsi, A. Tortora, and M. Bellini, Appl. Phys. B 77, 285 (2003).
    [CrossRef]
  8. A. Baltuška, T. Fuij, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
    [CrossRef]
  9. P. Baum and E. Riedle, Appl. Phys. B 79, 1027 (2004).
    [CrossRef]
  10. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
    [CrossRef]
  11. P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 77, 129 (2003).
    [CrossRef]

2004

P. Baum and E. Riedle, Appl. Phys. B 79, 1027 (2004).
[CrossRef]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

N. Haverkamp and H. R. Telle, Opt. Express 12, 582 (2004).
[CrossRef] [PubMed]

2003

P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, Opt. Lett. 28, 185 (2003).
[CrossRef] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 77, 129 (2003).
[CrossRef]

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

C. Corsi, A. Tortora, and M. Bellini, Appl. Phys. B 77, 285 (2003).
[CrossRef]

2002

A. Baltuška, T. Fuij, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef]

2001

J. Stenger and H. R. Telle, Proc. SPIE 4269, 72 (2001).
[CrossRef]

2000

1997

Baltuška, A.

A. Baltuška, T. Fuij, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef]

Baum, P.

P. Baum and E. Riedle, Appl. Phys. B 79, 1027 (2004).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 77, 129 (2003).
[CrossRef]

P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, Opt. Lett. 28, 185 (2003).
[CrossRef] [PubMed]

Bellini, M.

C. Corsi, A. Tortora, and M. Bellini, Appl. Phys. B 77, 285 (2003).
[CrossRef]

M. Bellini and T. W. Hänsch, Opt. Lett. 25, 1049 (2000).
[CrossRef]

Cerullo, G.

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Corsi, C.

C. Corsi, A. Tortora, and M. Bellini, Appl. Phys. B 77, 285 (2003).
[CrossRef]

De Silvestri, S.

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Fuij, T.

A. Baltuška, T. Fuij, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef]

Hänsch, T. W.

Haverkamp, N.

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Kobayashi, T.

A. Baltuška, T. Fuij, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef]

Lochbrunner, S.

P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 77, 129 (2003).
[CrossRef]

P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, Opt. Lett. 28, 185 (2003).
[CrossRef] [PubMed]

Piel, J.

Riedle, E.

P. Baum and E. Riedle, Appl. Phys. B 79, 1027 (2004).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 77, 129 (2003).
[CrossRef]

P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, Opt. Lett. 28, 185 (2003).
[CrossRef] [PubMed]

T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
[CrossRef]

Stenger, J.

J. Stenger and H. R. Telle, Proc. SPIE 4269, 72 (2001).
[CrossRef]

Telle, H. R.

Tortora, A.

C. Corsi, A. Tortora, and M. Bellini, Appl. Phys. B 77, 285 (2003).
[CrossRef]

Wilhelm, T.

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Appl. Phys. B

C. Corsi, A. Tortora, and M. Bellini, Appl. Phys. B 77, 285 (2003).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 77, 129 (2003).
[CrossRef]

P. Baum and E. Riedle, Appl. Phys. B 79, 1027 (2004).
[CrossRef]

Appl. Phys. Lett.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Baltuška, T. Fuij, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef]

Proc. SPIE

J. Stenger and H. R. Telle, Proc. SPIE 4269, 72 (2001).
[CrossRef]

Rev. Sci. Instrum.

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Three phase-locked NOPAs: dashed, 775 nm pump beam; dotted, 387 nm pump beam; solid, continuum; Sa, sapphire; BK7, glass substrate; BS, broadband beam splitter; FM, focusing mirror below standard beam height. (b) Typical output spectra.

Fig. 2
Fig. 2

(a) Nonlinear interferometer for phase detection of multicolor pulses: F1, long-pass filter; S, 1 mm Raman medium; F2, bandpass filter for the AS beam. (b) Interferogram between the AS and the LO beams. (c) Interference pattern to evaluate contrast and phase. (d) Relative phase for 500 shots.

Fig. 3
Fig. 3

(a) Frequency shift measurements. (b)–(d) Interference patterns for frequency shifts of zero, a half, and a full repetition rate. Representations of the shifted 1 kHz frequency combs (below).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( t ) E 0 ( t ) exp [ i ( ω 0 t ϕ 0 ) ] ,
E n ( t ) E n ( t ) exp [ i ( ω n t ϕ n ) ] = E n ( t ) exp { i [ ( ω 0 t ϕ 0 ) + Δ ω n t Δ ϕ n ] } ,
E AS χ ( 3 ) E pump E Stokes * E pump exp { 2 i [ ( ω 0 t ϕ 0 ) + Δ ω pump t Δ ϕ pump ] } exp { i [ ( ω 0 t ϕ 0 ) + Δ ω Stokes t Δ ϕ Stokes ] } = exp { i [ ( ω 0 ϕ 0 ) + Δ ω AS t 2 Δ ϕ pump + Δ ϕ Stokes ] } .
E LO exp { i [ ( ω 0 t ϕ 0 ) + Δ ω LO t Δ ϕ LO ] } .

Metrics