Abstract

An interferometric technique measuring the time-dependent electric field of a periodic optical source that uses samples of its interference with a reference source of short optical pulses is presented. Compared with other test-plus-reference techniques such as spectral interferometry and Fourier-transform spectroscopy, the technique is applicable when the signal under test and the reference signal do not originate from the same source. It is highly sensitive and allows the direct real-time characterization of optical sources and the extraction of a coherent periodic signal in an incoherent background.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).
    [CrossRef]
  2. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  3. C. Dorrer and I. Kang, Opt. Lett. 28, 477 (2003).
    [CrossRef] [PubMed]
  4. P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, IEEE J. Sel. Top. Quantum Electron. 10, 206 (2004).
    [CrossRef]
  5. L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  6. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. Delong, R. Trebino, and I. A. Walmsley, Opt. Lett. 21, 884 (1996).
    [CrossRef] [PubMed]
  7. S. Diddams and J.-C. Diels, J. Opt. Soc. Am. B 13, 1120 (1996).
    [CrossRef]
  8. I. A. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
    [CrossRef]
  9. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthold, and P. Winzer, J. Lightwave Technol. 23, 178 (2005).
    [CrossRef]
  10. K. Dou, A. Débarre, J. L. Le Gouët, I. Lorgeré, and P. Tchénio, Appl. Opt. 33, 7980 (1994).
    [CrossRef] [PubMed]
  11. F. Keilmann, C. Gohle, and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
    [CrossRef] [PubMed]
  12. C. Dorrer and I. Kang, Opt. Lett. 27, 1315 (2002).
    [CrossRef]

2005

2004

F. Keilmann, C. Gohle, and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
[CrossRef] [PubMed]

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, IEEE J. Sel. Top. Quantum Electron. 10, 206 (2004).
[CrossRef]

2003

2002

2001

I. A. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

1998

1996

1995

1994

Bowie, J. L.

Cheriaux, G.

Débarre, A.

Delong, K. W.

Diddams, S.

Diels, J.-C.

Doerr, C. R.

Dorrer, C.

Dou, K.

Emplit, P.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, IEEE J. Sel. Top. Quantum Electron. 10, 206 (2004).
[CrossRef]

Fittinghoff, D. N.

Froehly, C.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, IEEE J. Sel. Top. Quantum Electron. 10, 206 (2004).
[CrossRef]

Gohle, C.

Haelterman, M.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, IEEE J. Sel. Top. Quantum Electron. 10, 206 (2004).
[CrossRef]

Holzwarth, R.

Iaconis, C.

Jennings, R. T.

Joffre, M.

Kang, I.

Keilmann, F.

Kockaert, P.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, IEEE J. Sel. Top. Quantum Electron. 10, 206 (2004).
[CrossRef]

Krumbügel, M. A.

Le Gouët, J. L.

Lepetit, L.

Leuthold, J.

Lorgeré, I.

Ryf, R.

Sweetser, J. N.

Tchénio, P.

Trebino, R.

Walmsley, I. A.

Waxer, L.

I. A. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

Winzer, P.

Wong, V.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Representation of the source under test and the reference source (the intensity and phase have been plotted, respectively, by continuous and dashed curves). (b) Schematic of the method of linear optical sampling.

Fig. 2
Fig. 2

Electric fields of (a) a monochromatic laser after a semiconductor optical amplifier depleted by a 2.5 ps pump pulse (b) the output of a 40 GHz pulse carver. The intensity and the phase, respectively, are displayed by continuous and dashed curves for the sampling technique and by filled squares and open circles for the spectrogram technique.

Fig. 3
Fig. 3

(a) Intensity and phase of the carved pulse after 406 m of standard single-mode fiber measured at an average power equal to 0 dBm (continuous and dashed curves), 9 dBm (filled squares and filled circles), and 18 dBm (open squares and open circles). (b) Intensity and phase of the carved pulse after 406 m of standard single-mode fiber at an OSNR of 16 dB. (c) Top, intensity measured on a single scan of the period of the signal and bottom, its average over multiple scans.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϵ REF ( t ) = N E REF ( t N T REF ) exp [ i ω 0 ( t N T REF ) + i N φ REF ] ,
ϵ TEST ( t ) = E TEST ( t ) exp ( i ω 0 t ) ,
S N = exp [ i N ( M ω 0 T TEST + M φ TEST ω 0 T REF φ REF ) ] + E TEST ( t + N δ t ) E REF * ( t ) d t .

Metrics