Abstract

We demonstrate the excitation of solitons in a parametric amplifier with enhanced signal content through the use of a chirped-period quasi-phase-matching grating. This technique affords a low soliton threshold at the input end of a parametric amplifier, and the subsequent transformation to a desired soliton that exists at nonzero wave-vector mismatch through the use of a linearly chirped quasi-phase-matching grating. This approach has an advantage over direct excitation of solitons at nonzero wave-vector mismatch in uniform nonlinear materials and holds potential for improving the efficiency and mode quality of high-gain parametric amplifiers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Baumgartner and R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
    [CrossRef]
  2. L. J. Waxer, V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, Opt. Lett. 28, 1245 (2003).
    [CrossRef] [PubMed]
  3. I. Jovanovic, C. Ebbers, and C. P.J. Barty, Opt. Lett. 27, 1622 (2002).
    [CrossRef]
  4. I. Jovanovic, B. J. Comaskey, C. A. Ebbers, R. A. Bonner, D. M. Pennington, and E. C. Morse, Appl. Opt. 41, 2923 (2002).
    [CrossRef] [PubMed]
  5. A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
    [CrossRef]
  6. L. Torner, C. B. Clausen, and M. M. Fejer, Opt. Lett. 23, 903 (1998).
    [CrossRef]
  7. S. Carrasco, J. P. Torres, L. Torner, and R. Schiek, Opt. Lett. 25, 1273 (2000).
    [CrossRef]
  8. R. Schiek, R. Iwanow, T. Pertsch, G. I. Stegeman, G. Schreiber, and W. Sohler, Opt. Lett. 29, 596 (2004).
    [CrossRef] [PubMed]
  9. S. Carrasco-Rodriguez, J. P. Torres, L. Torner, and M. M. Fejer, J. Opt. Soc. Am. B 19, 1396 (2002).
    [CrossRef]
  10. M. T.G. Canva, R. A. Fuerst, S. Babiou, G. I. Stegeman, and G. Assanto, Opt. Lett. 22, 1683 (1997).
    [CrossRef]
  11. P. DiTrapani, G. Valiulis, W. Chinaglia, and A. Andreoni, Phys. Rev. Lett. 80, 265 (1998).
    [CrossRef]
  12. A. Galvanauskas, A. Hariharan, F. Raksi, K. K. Wong, D. Harter, G. Imeshev, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper CThB4.
  13. S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, IEEE J. Sel. Top. Quantum Electron. 8, 497 (2002).
    [CrossRef]
  14. H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, D. Eger, and M. Katz, Opt. Lett. 28, 640 (2003).
    [CrossRef] [PubMed]

2004 (1)

2003 (2)

2002 (5)

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, IEEE J. Sel. Top. Quantum Electron. 8, 497 (2002).
[CrossRef]

I. Jovanovic, B. J. Comaskey, C. A. Ebbers, R. A. Bonner, D. M. Pennington, and E. C. Morse, Appl. Opt. 41, 2923 (2002).
[CrossRef] [PubMed]

S. Carrasco-Rodriguez, J. P. Torres, L. Torner, and M. M. Fejer, J. Opt. Soc. Am. B 19, 1396 (2002).
[CrossRef]

I. Jovanovic, C. Ebbers, and C. P.J. Barty, Opt. Lett. 27, 1622 (2002).
[CrossRef]

2000 (1)

1998 (2)

L. Torner, C. B. Clausen, and M. M. Fejer, Opt. Lett. 23, 903 (1998).
[CrossRef]

P. DiTrapani, G. Valiulis, W. Chinaglia, and A. Andreoni, Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

1997 (1)

1979 (1)

R. A. Baumgartner and R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

Andreoni, A.

P. DiTrapani, G. Valiulis, W. Chinaglia, and A. Andreoni, Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

Artigas, D.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, IEEE J. Sel. Top. Quantum Electron. 8, 497 (2002).
[CrossRef]

Assanto, G.

Babiou, S.

Bagnoud, V.

Barthelemy, A.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, IEEE J. Sel. Top. Quantum Electron. 8, 497 (2002).
[CrossRef]

Barty, C. P.J.

Baumgartner, R. A.

R. A. Baumgartner and R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

Begishev, I. A.

Bonner, R. A.

Buryak, A. V.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

Byer, R. L.

R. A. Baumgartner and R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

Canva, M. T.G.

Carrasco, S.

Carrasco-Rodriguez, S.

Chinaglia, W.

P. DiTrapani, G. Valiulis, W. Chinaglia, and A. Andreoni, Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

Clausen, C. B.

Comaskey, B. J.

Couderc, V.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, IEEE J. Sel. Top. Quantum Electron. 8, 497 (2002).
[CrossRef]

DiTrapani, P.

P. DiTrapani, G. Valiulis, W. Chinaglia, and A. Andreoni, Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

Ebbers, C.

Ebbers, C. A.

Eger, D.

Fejer, M. M.

S. Carrasco-Rodriguez, J. P. Torres, L. Torner, and M. M. Fejer, J. Opt. Soc. Am. B 19, 1396 (2002).
[CrossRef]

L. Torner, C. B. Clausen, and M. M. Fejer, Opt. Lett. 23, 903 (1998).
[CrossRef]

A. Galvanauskas, A. Hariharan, F. Raksi, K. K. Wong, D. Harter, G. Imeshev, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper CThB4.

Fuerst, R. A.

Galvanauskas, A.

A. Galvanauskas, A. Hariharan, F. Raksi, K. K. Wong, D. Harter, G. Imeshev, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper CThB4.

Guardalben, M. J.

Hariharan, A.

A. Galvanauskas, A. Hariharan, F. Raksi, K. K. Wong, D. Harter, G. Imeshev, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper CThB4.

Harter, D.

A. Galvanauskas, A. Hariharan, F. Raksi, K. K. Wong, D. Harter, G. Imeshev, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper CThB4.

Imeshev, G.

A. Galvanauskas, A. Hariharan, F. Raksi, K. K. Wong, D. Harter, G. Imeshev, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper CThB4.

Iwanow, R.

Jankovic, L.

Jovanovic, I.

Katz, M.

Kim, H.

Lopez-Lago, E.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, IEEE J. Sel. Top. Quantum Electron. 8, 497 (2002).
[CrossRef]

Morse, E. C.

Pennington, D. M.

Pertsch, T.

Puth, J.

Raksi, F.

A. Galvanauskas, A. Hariharan, F. Raksi, K. K. Wong, D. Harter, G. Imeshev, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper CThB4.

Schiek, R.

Schreiber, G.

Skryabin, D. V.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

Sohler, W.

Stegeman, G.

Stegeman, G. I.

Torner, L.

Torres, J. P.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, IEEE J. Sel. Top. Quantum Electron. 8, 497 (2002).
[CrossRef]

S. Carrasco-Rodriguez, J. P. Torres, L. Torner, and M. M. Fejer, J. Opt. Soc. Am. B 19, 1396 (2002).
[CrossRef]

S. Carrasco, J. P. Torres, L. Torner, and R. Schiek, Opt. Lett. 25, 1273 (2000).
[CrossRef]

Trapani, P. D.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

Trillo, S.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

Valiulis, G.

P. DiTrapani, G. Valiulis, W. Chinaglia, and A. Andreoni, Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

Waxer, L. J.

Wong, K. K.

A. Galvanauskas, A. Hariharan, F. Raksi, K. K. Wong, D. Harter, G. Imeshev, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper CThB4.

Zuegel, J. D.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. A. Baumgartner and R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, IEEE J. Sel. Top. Quantum Electron. 8, 497 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (7)

Phys. Rep. (1)

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

P. DiTrapani, G. Valiulis, W. Chinaglia, and A. Andreoni, Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

Other (1)

A. Galvanauskas, A. Hariharan, F. Raksi, K. K. Wong, D. Harter, G. Imeshev, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper CThB4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Soliton parametric amplification with chirped gratings. The graph shows the power sharing between the component waves of an exact multicolor soliton as a function of wave-vector mismatch, normalized to the pump beam diffraction length Z R ( Z R = 5.1 mm in our experiment), for a soliton with 6 kW of total power. The bottom schematic shows how these properties can be mapped onto a chirped QPM grating.

Fig. 2
Fig. 2

Engineered solitons. Top row: surface plots show spatial intensity profile of (a) pump and (b) signal components of a multicolor soliton in a uniform grating at Δ k = 0 . Bottom row: surface plots of pump (c) and signal (d) waves at the output of a chirped grating with initial wave-vector mismatch Δ k i = 0 and final mismatch Δ k f = 875 m 1 . Note the clearly higher conversion efficiency in the chirped grating case.

Fig. 3
Fig. 3

Properties of engineered solitons. Top, energy inside a digital aperture of two input beam radii carried by the pump (crosses, experiment; short-dashed curve, simulation), signal (circles, experiment; dashed curve, simulation), and total (asterisks, experiment; solid curve, simulation) in chirped gratings versus final wave-vector mismatch. The initial mismatch in all cases is Δ k = 0 . Bottom, fractional energy, defined as the signal or pump energy divided by the sum ( signal + pump ) energy. The shaded region indicates the presence of amplified vacuum noise. In that region the input peak power is below the soliton threshold, and thus solitons do not form.

Metrics