Abstract

We compare the benefits of spatial and spectral priors in near-infrared diffuse tomography image reconstruction. Although previous studies that incorporated anatomical spatial priors have shown improvement in algorithm convergence and resolution, our results indicate that functional parameter quantification by this approach can be suboptimal. The incorporation of a priori spectral information significantly improves the accuracy observed in recovered images. Specifically, phantom results show that the maximum total hemoglobin concentration ([HbT]) in a region of heterogeneity reached 91% of the true value compared to 63% using spatial priors. The combination of both priors produced results accurate to 98% of the true [HbT]. When both spatial and spectral priors were applied in a healthy volunteer, glandular tissue showed a higher [HbT], water fraction, and scattering power compared to adipose tissue.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schweiger and S. R. Arridge, Phys. Med. Biol. 44, 2703 (1999).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, Neoplasia 4, 347 (2002).
    [CrossRef] [PubMed]
  3. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. (to be published).
  4. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, Opt. Lett. 28, 2339 (2003).
    [CrossRef] [PubMed]
  5. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, Opt. Lett. 29, 256 (2004).
    [CrossRef] [PubMed]
  6. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, Appl. Opt. 44, 1858 (2005).
    [CrossRef] [PubMed]
  7. K. D. Paulsen and H. Jiang, Appl. Opt. 35, 3447 (1996).
    [CrossRef] [PubMed]
  8. B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
    [CrossRef]
  9. X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, Phys. Med. Biol. 49, N155 (2004).
    [CrossRef] [PubMed]
  10. A. Li, “Diffuse optical tomography with multiple priors,” Ph.D. dissertation (Tufts University, 2005).

2005

2004

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, Opt. Lett. 29, 256 (2004).
[CrossRef] [PubMed]

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, Phys. Med. Biol. 49, N155 (2004).
[CrossRef] [PubMed]

2003

2002

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, Neoplasia 4, 347 (2002).
[CrossRef] [PubMed]

1999

M. Schweiger and S. R. Arridge, Phys. Med. Biol. 44, 2703 (1999).
[CrossRef] [PubMed]

1996

Arridge, S. R.

Boas, D. A.

Brooksby, B.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. (to be published).

Brooksby, B. A.

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

Chance, B.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, Phys. Med. Biol. 49, N155 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, Neoplasia 4, 347 (2002).
[CrossRef] [PubMed]

Choe, R.

Corlu, A.

Culver, J. P.

Dehghani, H.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, Appl. Opt. 44, 1858 (2005).
[CrossRef] [PubMed]

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. (to be published).

Doyley, M.

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

Durduran, T.

Guven, M.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, Phys. Med. Biol. 49, N155 (2004).
[CrossRef] [PubMed]

Hillman, E. M.

Intes, X.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, Phys. Med. Biol. 49, N155 (2004).
[CrossRef] [PubMed]

Jiang, H.

Jiang, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, Appl. Opt. 44, 1858 (2005).
[CrossRef] [PubMed]

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. (to be published).

Kogel, C.

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. (to be published).

Li, A.

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, Opt. Lett. 29, 256 (2004).
[CrossRef] [PubMed]

A. Li, “Diffuse optical tomography with multiple priors,” Ph.D. dissertation (Tufts University, 2005).

Maloux, C.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, Phys. Med. Biol. 49, N155 (2004).
[CrossRef] [PubMed]

Miller, E. L.

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, Neoplasia 4, 347 (2002).
[CrossRef] [PubMed]

Paulsen, K. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, Appl. Opt. 44, 1858 (2005).
[CrossRef] [PubMed]

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

K. D. Paulsen and H. Jiang, Appl. Opt. 35, 3447 (1996).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. (to be published).

Pogue, B. W.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, Appl. Opt. 44, 1858 (2005).
[CrossRef] [PubMed]

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. (to be published).

Poplack, S. P.

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. (to be published).

Schnall, M. D.

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, Neoplasia 4, 347 (2002).
[CrossRef] [PubMed]

Schweiger, M.

Srinivasan, S.

Weaver, J.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. (to be published).

Weaver, J. B.

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

Yazici, T.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, Phys. Med. Biol. 49, N155 (2004).
[CrossRef] [PubMed]

Yodh, A. G.

Zhang, Q.

Appl. Opt.

Neoplasia

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, Neoplasia 4, 347 (2002).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, Phys. Med. Biol. 49, N155 (2004).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, Phys. Med. Biol. 44, 2703 (1999).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

B. A. Brooksby, S. Jiang, H. Dehghani, C. Kogel, M. Doyley, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, Rev. Sci. Instrum. 75, 5262 (2004).
[CrossRef]

Other

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. (to be published).

A. Li, “Diffuse optical tomography with multiple priors,” Ph.D. dissertation (Tufts University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Cylindrical breast phantom inside our NIR system. (b) Anatomically coronal MRI of a healthy breast imaged with our simultaneous NIR–MRI system. Two tissue types are visible: fibroglandular (dark gray) and adipose tissue (light gray).

Fig. 2
Fig. 2

Images of total hemoglobin concentration ( μ M ) , oxygen saturation (%), water (%), scattering amplitude, and scattering power for the phantom. The top row shows the true values, the second shows the reconstruction that uses no priors, the third uses spatial constraints, the fourth uses spectral constraints, and the bottom uses both spectral and spatial priors.

Fig. 3
Fig. 3

Mean reconstructed values of [ Hb T ] ( μ M ) , S t O 2 ( % ) , water (%), A, and b, in the region of the inclusion using four algorithms. When the blood concentration is high, the best results are achieved by combining spectral and spatial priors. As expected, S t O 2 , water, A, and b within the cavity remain constant.

Fig. 4
Fig. 4

Breast property images for a healthy volunteer. First (top), only the outer boundary of the tissue and optical fiber positions are specified. Second, the algorithm used spatial constraints derived from the MRI [Fig. 1(b)] related to the internal distribution of adipose and glandular tissue. Third, spectral constraints were applied and chromophore concentrations and scattering parameters were reconstructed directly. Fourth (bottom), spatial and spectral constraints were combined.

Metrics