Abstract

We present a surprising modification of optical interferometry. A so-called spiral phase element in the beam path of a standard microscope results in an interferogram of phase samples, for which the interference fringes have the shape of spirals instead of closed contour lines as in traditional interferograms. This configuration overrides the basic problem of interferometry, i.e., that elevations and depressions cannot be distinguished. Therefore a complete sample profile can be reconstructed from a single exposure, promising, e.g., high-speed metrology with a single laser pulse. The method is easy to implement, it does not require a spatially separated reference beam, and it is optimally stable against environmental noise.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription