Abstract

Highly efficient and functionalized polarization gratings have been recorded in azobenzene-containing mesogenic composites with twisted nematic cell configurations. The polarization gratings formed in azobenzene-containing mesogenic composites show a high diffraction efficiency of more than 45% and convert the polarization state of light at the same time. The polarization direction of the diffracted laser beams can be controlled by the twisted angle of the nematic cell. These characteristics of the polarization gratings are well explained by means of Jones calculus.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ikeda and Y. Wu, Pure Appl. Chem. 71, 2131 (1999).
    [CrossRef]
  2. K. Ichimura, Chem. Rev. 100, 1847 (2000).
    [CrossRef]
  3. M. Kidowaki, T. Fujisawa, S. Morino, K. Ichimura, and J. Stumpe, Appl. Phys. Lett. 76, 1377 (2000).
    [CrossRef]
  4. M. Han and K. Ichimura, Macromolecules 34, 90 (2001).
    [CrossRef]
  5. M. Han and K. Ichimura, Macromolecules 34, 82 (2001).
    [CrossRef]
  6. T. Ikeda, J. Mater. Chem. 13, 2037 (2003).
    [CrossRef]
  7. E. Uchida, T. Shiraku, H. Ono, and N. Kawatsuki, Macromolecules 37, 5282 (2004).
    [CrossRef]
  8. N. Tsutsumi and A. Fujihara, Appl. Phys. Lett. 85, 4592 (2004).
    [CrossRef]
  9. C. Sourisseau, Chem. Rev. 104, 3851 (2004).
    [CrossRef] [PubMed]
  10. N. Kawatsuki, E. Uchida, and T. Yamamoto, Macromol. Chem. Phys. 204, 584 (2003).
    [CrossRef]
  11. N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, Macromolecules 35, 706 (2002).
    [CrossRef]
  12. H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, Appl. Phys. Lett. 82, 1359 (2003).
    [CrossRef]
  13. H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, J. Appl. Phys. 94, 1298 (2003).
    [CrossRef]
  14. T. D. Ebralidze, Opt. Spektrosk. 53, 944 (1982).
  15. L. Nikolova and T. Todorov, Opt. Acta 31, 579 (1984).
    [CrossRef]
  16. C. Solano, R. A. Lessard, and P. C. Roberge, Appl. Opt. 26, 1989 (1987).
    [CrossRef] [PubMed]
  17. T. D. Ebralidze and N. A. Ebralidze, Appl. Opt. 31, 4720 (1992).
    [CrossRef] [PubMed]
  18. T. D. Ebralidze, Appl. Opt. 34, 1357 (1995).
    [CrossRef] [PubMed]
  19. L. Nikolova, M. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, Appl. Opt. 35, 3835 (1996).
    [CrossRef] [PubMed]
  20. I. Naydenova, L. Nikolova, T. Todorov, F. Andrussi, S. Hvilsted, and P. S. Ramanujam, J. Mod. Opt. 44, 1643 (1997).
    [CrossRef]
  21. G. Cipparrone, A. Mazzulla, and L. M. Blinov, J. Opt. Soc. Am. B 19, 1157 (2002).
    [CrossRef]
  22. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Dover, 1994), pp. 179–262.

2004 (3)

E. Uchida, T. Shiraku, H. Ono, and N. Kawatsuki, Macromolecules 37, 5282 (2004).
[CrossRef]

N. Tsutsumi and A. Fujihara, Appl. Phys. Lett. 85, 4592 (2004).
[CrossRef]

C. Sourisseau, Chem. Rev. 104, 3851 (2004).
[CrossRef] [PubMed]

2003 (4)

N. Kawatsuki, E. Uchida, and T. Yamamoto, Macromol. Chem. Phys. 204, 584 (2003).
[CrossRef]

T. Ikeda, J. Mater. Chem. 13, 2037 (2003).
[CrossRef]

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, Appl. Phys. Lett. 82, 1359 (2003).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, J. Appl. Phys. 94, 1298 (2003).
[CrossRef]

2002 (2)

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, Macromolecules 35, 706 (2002).
[CrossRef]

G. Cipparrone, A. Mazzulla, and L. M. Blinov, J. Opt. Soc. Am. B 19, 1157 (2002).
[CrossRef]

2001 (2)

M. Han and K. Ichimura, Macromolecules 34, 90 (2001).
[CrossRef]

M. Han and K. Ichimura, Macromolecules 34, 82 (2001).
[CrossRef]

2000 (2)

K. Ichimura, Chem. Rev. 100, 1847 (2000).
[CrossRef]

M. Kidowaki, T. Fujisawa, S. Morino, K. Ichimura, and J. Stumpe, Appl. Phys. Lett. 76, 1377 (2000).
[CrossRef]

1999 (1)

T. Ikeda and Y. Wu, Pure Appl. Chem. 71, 2131 (1999).
[CrossRef]

1997 (1)

I. Naydenova, L. Nikolova, T. Todorov, F. Andrussi, S. Hvilsted, and P. S. Ramanujam, J. Mod. Opt. 44, 1643 (1997).
[CrossRef]

1996 (1)

1995 (1)

1992 (1)

1987 (1)

1984 (1)

L. Nikolova and T. Todorov, Opt. Acta 31, 579 (1984).
[CrossRef]

1982 (1)

T. D. Ebralidze, Opt. Spektrosk. 53, 944 (1982).

Andrussi, F.

I. Naydenova, L. Nikolova, T. Todorov, F. Andrussi, S. Hvilsted, and P. S. Ramanujam, J. Mod. Opt. 44, 1643 (1997).
[CrossRef]

Andruzzi, F.

Blinov, L. M.

Burch, J. M.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Dover, 1994), pp. 179–262.

Cipparrone, G.

Ebralidze, N. A.

Ebralidze, T. D.

Emoto, A.

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, Appl. Phys. Lett. 82, 1359 (2003).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, J. Appl. Phys. 94, 1298 (2003).
[CrossRef]

Fujihara, A.

N. Tsutsumi and A. Fujihara, Appl. Phys. Lett. 85, 4592 (2004).
[CrossRef]

Fujisawa, T.

M. Kidowaki, T. Fujisawa, S. Morino, K. Ichimura, and J. Stumpe, Appl. Phys. Lett. 76, 1377 (2000).
[CrossRef]

Gerrard, A.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Dover, 1994), pp. 179–262.

Goto, K.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, Macromolecules 35, 706 (2002).
[CrossRef]

Han, M.

M. Han and K. Ichimura, Macromolecules 34, 82 (2001).
[CrossRef]

M. Han and K. Ichimura, Macromolecules 34, 90 (2001).
[CrossRef]

Hasegawa, T.

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, Appl. Phys. Lett. 82, 1359 (2003).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, J. Appl. Phys. 94, 1298 (2003).
[CrossRef]

Hvilsted, S.

I. Naydenova, L. Nikolova, T. Todorov, F. Andrussi, S. Hvilsted, and P. S. Ramanujam, J. Mod. Opt. 44, 1643 (1997).
[CrossRef]

L. Nikolova, M. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, Appl. Opt. 35, 3835 (1996).
[CrossRef] [PubMed]

Ichimura, K.

M. Han and K. Ichimura, Macromolecules 34, 90 (2001).
[CrossRef]

M. Han and K. Ichimura, Macromolecules 34, 82 (2001).
[CrossRef]

M. Kidowaki, T. Fujisawa, S. Morino, K. Ichimura, and J. Stumpe, Appl. Phys. Lett. 76, 1377 (2000).
[CrossRef]

K. Ichimura, Chem. Rev. 100, 1847 (2000).
[CrossRef]

Ikeda, T.

T. Ikeda, J. Mater. Chem. 13, 2037 (2003).
[CrossRef]

T. Ikeda and Y. Wu, Pure Appl. Chem. 71, 2131 (1999).
[CrossRef]

Ivanov, M.

Kawakami, T.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, Macromolecules 35, 706 (2002).
[CrossRef]

Kawatsuki, N.

E. Uchida, T. Shiraku, H. Ono, and N. Kawatsuki, Macromolecules 37, 5282 (2004).
[CrossRef]

N. Kawatsuki, E. Uchida, and T. Yamamoto, Macromol. Chem. Phys. 204, 584 (2003).
[CrossRef]

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, Appl. Phys. Lett. 82, 1359 (2003).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, J. Appl. Phys. 94, 1298 (2003).
[CrossRef]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, Macromolecules 35, 706 (2002).
[CrossRef]

Kidowaki, M.

M. Kidowaki, T. Fujisawa, S. Morino, K. Ichimura, and J. Stumpe, Appl. Phys. Lett. 76, 1377 (2000).
[CrossRef]

Lessard, R. A.

Mazzulla, A.

Morino, S.

M. Kidowaki, T. Fujisawa, S. Morino, K. Ichimura, and J. Stumpe, Appl. Phys. Lett. 76, 1377 (2000).
[CrossRef]

Naydenova, I.

I. Naydenova, L. Nikolova, T. Todorov, F. Andrussi, S. Hvilsted, and P. S. Ramanujam, J. Mod. Opt. 44, 1643 (1997).
[CrossRef]

Nikolova, L.

I. Naydenova, L. Nikolova, T. Todorov, F. Andrussi, S. Hvilsted, and P. S. Ramanujam, J. Mod. Opt. 44, 1643 (1997).
[CrossRef]

L. Nikolova, M. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, Appl. Opt. 35, 3835 (1996).
[CrossRef] [PubMed]

L. Nikolova and T. Todorov, Opt. Acta 31, 579 (1984).
[CrossRef]

Ono, H.

E. Uchida, T. Shiraku, H. Ono, and N. Kawatsuki, Macromolecules 37, 5282 (2004).
[CrossRef]

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, Appl. Phys. Lett. 82, 1359 (2003).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, J. Appl. Phys. 94, 1298 (2003).
[CrossRef]

Ramanujam, P. S.

I. Naydenova, L. Nikolova, T. Todorov, F. Andrussi, S. Hvilsted, and P. S. Ramanujam, J. Mod. Opt. 44, 1643 (1997).
[CrossRef]

L. Nikolova, M. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, Appl. Opt. 35, 3835 (1996).
[CrossRef] [PubMed]

Roberge, P. C.

Shiraku, T.

E. Uchida, T. Shiraku, H. Ono, and N. Kawatsuki, Macromolecules 37, 5282 (2004).
[CrossRef]

Solano, C.

Sourisseau, C.

C. Sourisseau, Chem. Rev. 104, 3851 (2004).
[CrossRef] [PubMed]

Stumpe, J.

M. Kidowaki, T. Fujisawa, S. Morino, K. Ichimura, and J. Stumpe, Appl. Phys. Lett. 76, 1377 (2000).
[CrossRef]

Takahashi, F.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, J. Appl. Phys. 94, 1298 (2003).
[CrossRef]

Todorov, M.

Todorov, T.

I. Naydenova, L. Nikolova, T. Todorov, F. Andrussi, S. Hvilsted, and P. S. Ramanujam, J. Mod. Opt. 44, 1643 (1997).
[CrossRef]

L. Nikolova and T. Todorov, Opt. Acta 31, 579 (1984).
[CrossRef]

Tsutsumi, N.

N. Tsutsumi and A. Fujihara, Appl. Phys. Lett. 85, 4592 (2004).
[CrossRef]

Uchida, E.

E. Uchida, T. Shiraku, H. Ono, and N. Kawatsuki, Macromolecules 37, 5282 (2004).
[CrossRef]

N. Kawatsuki, E. Uchida, and T. Yamamoto, Macromol. Chem. Phys. 204, 584 (2003).
[CrossRef]

Wu, Y.

T. Ikeda and Y. Wu, Pure Appl. Chem. 71, 2131 (1999).
[CrossRef]

Yamamoto, T.

N. Kawatsuki, E. Uchida, and T. Yamamoto, Macromol. Chem. Phys. 204, 584 (2003).
[CrossRef]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, Macromolecules 35, 706 (2002).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, Appl. Phys. Lett. 82, 1359 (2003).
[CrossRef]

M. Kidowaki, T. Fujisawa, S. Morino, K. Ichimura, and J. Stumpe, Appl. Phys. Lett. 76, 1377 (2000).
[CrossRef]

N. Tsutsumi and A. Fujihara, Appl. Phys. Lett. 85, 4592 (2004).
[CrossRef]

Chem. Rev. (2)

C. Sourisseau, Chem. Rev. 104, 3851 (2004).
[CrossRef] [PubMed]

K. Ichimura, Chem. Rev. 100, 1847 (2000).
[CrossRef]

J. Appl. Phys. (1)

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, J. Appl. Phys. 94, 1298 (2003).
[CrossRef]

J. Mater. Chem. (1)

T. Ikeda, J. Mater. Chem. 13, 2037 (2003).
[CrossRef]

J. Mod. Opt. (1)

I. Naydenova, L. Nikolova, T. Todorov, F. Andrussi, S. Hvilsted, and P. S. Ramanujam, J. Mod. Opt. 44, 1643 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Macromol. Chem. Phys. (1)

N. Kawatsuki, E. Uchida, and T. Yamamoto, Macromol. Chem. Phys. 204, 584 (2003).
[CrossRef]

Macromolecules (4)

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, Macromolecules 35, 706 (2002).
[CrossRef]

M. Han and K. Ichimura, Macromolecules 34, 90 (2001).
[CrossRef]

M. Han and K. Ichimura, Macromolecules 34, 82 (2001).
[CrossRef]

E. Uchida, T. Shiraku, H. Ono, and N. Kawatsuki, Macromolecules 37, 5282 (2004).
[CrossRef]

Opt. Acta (1)

L. Nikolova and T. Todorov, Opt. Acta 31, 579 (1984).
[CrossRef]

Opt. Spektrosk. (1)

T. D. Ebralidze, Opt. Spektrosk. 53, 944 (1982).

Pure Appl. Chem. (1)

T. Ikeda and Y. Wu, Pure Appl. Chem. 71, 2131 (1999).
[CrossRef]

Other (1)

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Dover, 1994), pp. 179–262.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Chemical structure of the SLCP.

Fig. 2
Fig. 2

Schematic of the holographic recording medium.

Fig. 3
Fig. 3

Summary of the characteristics of polarization gratings formed in azobenzene-containing mesogenic composites with twisted nematic cell configurations. Twisted angle Θ was set to be (a) 30°, (b) 60°, and (c) 90°. The polar plots of the probe, +first-order ( + 1 st ) and −first-order ( 1 st ) diffracted beams appear in the figure. Circles, experimental observation; solid curves, theoretical calculation. The diffraction efficiency, which is defined as the intensity ratio of the diffracted beam to the incident probe beam, appears at the bottom of each polar plot.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ n = [ Δ n lin cos δ i Δ n cir sin δ i Δ n cir sin δ Δ n lin cos δ ] .
T = exp ( i 2 π λ Δ n d )
T ± 1 = [ i Δ φ lin cos δ Δ φ cir sin δ Δ φ cir sin δ i Δ φ lin cos δ ] ,
T ± 1 = [ cos ψ sin ψ sin ψ cos ψ ] T ± 1 [ cos ψ sin ψ sin ψ cos ψ ] R ( ψ ) T ± 1 R ( ψ ) .
T ± 1 = R ( π 2 ) T ± 1 = 1 2 [ Δ φ lin Δ φ cir 0 0 Δ φ lin Δ φ cir ] .
t ± 1 = 1 2 1 N [ ( Δ φ lin Δ φ cir ) 1 N 0 0 ( Δ φ lin Δ φ cir ) 1 N ] .
W ± 1 = m = 1 N R ( m θ ) t ± 1 R ( m θ ) .
E ± 1 = R ( π 2 ) W ± 1 E p ,

Metrics