Abstract

There is interest in single-mode fibers that are highly transparent in the mid-infrared. Such fibers would be valuable for spectroscopy, interferometry, and heterodyne detection. We have developed core–clad fibers made of crystalline silver halides with an external diameter of 900μm and core diameters as small as 60μm. These fibers exhibit homogeneous core and cladding regions, round cores, and smooth core–cladding interfaces. The 60μm fibers support roughly 70 modes and have low losses over a broad spectral range in the mid-infrared. This will pave the road for the development of single-mode mid-infrared fibers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Infrared Fiber Optics (SPIE Press, 1990).
  2. O. Eyal, V. Scharf, S. Shalem, and A. Katzir, Opt. Lett. 21, 1147 (1996).
    [CrossRef] [PubMed]
  3. K. Wallace, G. Hardy, and E. Serabyn, Nature 406, 700 (2000).
    [CrossRef] [PubMed]
  4. E. Rave, D. Shemesh, and A. Katzir, Appl. Phys. Lett. 76, 1795 (2000).
    [CrossRef]
  5. D. Bunimovich and A. Katzir, Appl. Opt. 32, 2045 (1993).
    [CrossRef] [PubMed]
  6. I. Paiss, F. Moser, and A. Katzir, Fiber Integr. Opt. 10, 275 (1991).
    [CrossRef]
  7. E. Rave, L. Nagli, and A. Katzir, Opt. Lett. 25, 1237 (2000).
    [CrossRef]
  8. E. Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, Appl. Opt. 43, 2236 (2004).
    [CrossRef] [PubMed]
  9. P. Ephrat, K. Roodenko, L. Nagli, and A. Katzir, Appl. Phys. Lett. 84, 637 (2004).
    [CrossRef]

2004 (2)

E. Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, Appl. Opt. 43, 2236 (2004).
[CrossRef] [PubMed]

P. Ephrat, K. Roodenko, L. Nagli, and A. Katzir, Appl. Phys. Lett. 84, 637 (2004).
[CrossRef]

2000 (3)

E. Rave, L. Nagli, and A. Katzir, Opt. Lett. 25, 1237 (2000).
[CrossRef]

K. Wallace, G. Hardy, and E. Serabyn, Nature 406, 700 (2000).
[CrossRef] [PubMed]

E. Rave, D. Shemesh, and A. Katzir, Appl. Phys. Lett. 76, 1795 (2000).
[CrossRef]

1996 (1)

1993 (1)

1991 (1)

I. Paiss, F. Moser, and A. Katzir, Fiber Integr. Opt. 10, 275 (1991).
[CrossRef]

Bunimovich, D.

Ephrat, P.

E. Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, Appl. Opt. 43, 2236 (2004).
[CrossRef] [PubMed]

P. Ephrat, K. Roodenko, L. Nagli, and A. Katzir, Appl. Phys. Lett. 84, 637 (2004).
[CrossRef]

Eyal, O.

Goldberg, M.

Hardy, G.

K. Wallace, G. Hardy, and E. Serabyn, Nature 406, 700 (2000).
[CrossRef] [PubMed]

Harrington, J. A.

J. A. Harrington, Infrared Fiber Optics (SPIE Press, 1990).

Katzir, A.

Kedmi, E.

Moser, F.

I. Paiss, F. Moser, and A. Katzir, Fiber Integr. Opt. 10, 275 (1991).
[CrossRef]

Nagli, L.

P. Ephrat, K. Roodenko, L. Nagli, and A. Katzir, Appl. Phys. Lett. 84, 637 (2004).
[CrossRef]

E. Rave, L. Nagli, and A. Katzir, Opt. Lett. 25, 1237 (2000).
[CrossRef]

Paiss, I.

I. Paiss, F. Moser, and A. Katzir, Fiber Integr. Opt. 10, 275 (1991).
[CrossRef]

Rave, E.

Roodenko, K.

P. Ephrat, K. Roodenko, L. Nagli, and A. Katzir, Appl. Phys. Lett. 84, 637 (2004).
[CrossRef]

Scharf, V.

Serabyn, E.

K. Wallace, G. Hardy, and E. Serabyn, Nature 406, 700 (2000).
[CrossRef] [PubMed]

Shalem, S.

Shemesh, D.

E. Rave, D. Shemesh, and A. Katzir, Appl. Phys. Lett. 76, 1795 (2000).
[CrossRef]

Wallace, K.

K. Wallace, G. Hardy, and E. Serabyn, Nature 406, 700 (2000).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

P. Ephrat, K. Roodenko, L. Nagli, and A. Katzir, Appl. Phys. Lett. 84, 637 (2004).
[CrossRef]

E. Rave, D. Shemesh, and A. Katzir, Appl. Phys. Lett. 76, 1795 (2000).
[CrossRef]

Fiber Integr. Opt. (1)

I. Paiss, F. Moser, and A. Katzir, Fiber Integr. Opt. 10, 275 (1991).
[CrossRef]

Nature (1)

K. Wallace, G. Hardy, and E. Serabyn, Nature 406, 700 (2000).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (1)

J. A. Harrington, Infrared Fiber Optics (SPIE Press, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Microphotograph ( × 500 ) of an etched cross section of a core–clad fiber with a 60 μ m core diameter. The core region shows a uniform microstructure and a smooth core–cladding interface. (b), (c) Magnetic field distributions of two representative modes obtained by the finite-difference method simulation done on a fiber with the core shape presented in (a). (b) shows the fundamental mode distribution that is confined to the core region, and (c) shows a cladding mode with most of its energy distributed outside the core region.

Fig. 2
Fig. 2

FOV pattern ( Δ θ 50 ° ) and far-field pattern ( Δ Φ 16 ° ) of a 2 m long core–clad fiber with a core diameter of 140 μ m .

Fig. 3
Fig. 3

Power output P as a function of the position of a 7 μ m tapered tip, which scanned the input face of a small core fiber with a core diameter of 60 μ m and an external diameter of 900 μ m .

Metrics