Abstract

The influence of spatial migration of excitation among neighboring Er3+ ions on the dynamics of population grating formation in Er-doped optical fibers is reported. The effect manifests itself in an additional increment in the grating formation rate compared with the fluorescence growth rate observed for the same spatially uniform average light power. The experiments, performed at λ=1549nm in the configuration of transient two-wave mixing with two similar single-mode Er-doped fibers with significantly different erbium concentrations (640 and 5600 parts in 106), demonstrated the essential contribution of this effect to the grating formation rate in the latter fiber. The evaluated diffusion coefficient proved to be 2.3×109cm2s, which ensures effective migration of the excitation by 48nm, i.e., by 18 average inter-ion distances in this fiber.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Powell, Physics of Solid-State Laser Materials (Springer, 1998), Chap. 5.
    [CrossRef]
  2. N. V. Nikonorov, A. K. Przhevuskii, and A. V. Chukharev, J. Non-Cryst. Solids 324, 92 (2003).
    [CrossRef]
  3. E. Delavaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, IEEE Photon. Technol. Lett. 5, 73 (1993).
    [CrossRef]
  4. A. E. Siegman, Lasers (University Science, 1986).
  5. M. Horowitz, R. Daisy, B. Fisher, and J. Zyskind, Electron. Lett. 30, 648 (1994).
    [CrossRef]
  6. V. A. French and R. C. Powell, Opt. Lett. 16, 666 (1991).
    [CrossRef] [PubMed]
  7. S. J. Frisken, Opt. Lett. 17, 1776 (1992).
    [CrossRef] [PubMed]
  8. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999), Chap. 4.
  9. S. Stepanov, E. Hernández, and M. Plata, Opt. Lett. 29, 1327 (2004).
    [CrossRef] [PubMed]
  10. S. Stepanov and M. Plata, Ukr. J. Phys. 49, 389 (2004).
  11. S. Stepanov, E. Hernández, and M. Plata, J. Opt. Soc. Am. B 22, 1161 (2005).
    [CrossRef]

2005 (1)

2004 (2)

2003 (1)

N. V. Nikonorov, A. K. Przhevuskii, and A. V. Chukharev, J. Non-Cryst. Solids 324, 92 (2003).
[CrossRef]

1994 (1)

M. Horowitz, R. Daisy, B. Fisher, and J. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

1993 (1)

E. Delavaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, IEEE Photon. Technol. Lett. 5, 73 (1993).
[CrossRef]

1992 (1)

1991 (1)

Bayon, J.-F.

E. Delavaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, IEEE Photon. Technol. Lett. 5, 73 (1993).
[CrossRef]

Becker, P. C.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999), Chap. 4.

Chukharev, A. V.

N. V. Nikonorov, A. K. Przhevuskii, and A. V. Chukharev, J. Non-Cryst. Solids 324, 92 (2003).
[CrossRef]

Daisy, R.

M. Horowitz, R. Daisy, B. Fisher, and J. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

Delavaque, E.

E. Delavaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, IEEE Photon. Technol. Lett. 5, 73 (1993).
[CrossRef]

Fisher, B.

M. Horowitz, R. Daisy, B. Fisher, and J. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

French, V. A.

Frisken, S. J.

Georges, T.

E. Delavaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, IEEE Photon. Technol. Lett. 5, 73 (1993).
[CrossRef]

Hernández, E.

Horowitz, M.

M. Horowitz, R. Daisy, B. Fisher, and J. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

Lamouler, P.

E. Delavaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, IEEE Photon. Technol. Lett. 5, 73 (1993).
[CrossRef]

Monerie, M.

E. Delavaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, IEEE Photon. Technol. Lett. 5, 73 (1993).
[CrossRef]

Nikonorov, N. V.

N. V. Nikonorov, A. K. Przhevuskii, and A. V. Chukharev, J. Non-Cryst. Solids 324, 92 (2003).
[CrossRef]

Olsson, N. A.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999), Chap. 4.

Plata, M.

Powell, R. C.

V. A. French and R. C. Powell, Opt. Lett. 16, 666 (1991).
[CrossRef] [PubMed]

R. C. Powell, Physics of Solid-State Laser Materials (Springer, 1998), Chap. 5.
[CrossRef]

Przhevuskii, A. K.

N. V. Nikonorov, A. K. Przhevuskii, and A. V. Chukharev, J. Non-Cryst. Solids 324, 92 (2003).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Simpson, J. R.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999), Chap. 4.

Stepanov, S.

Zyskind, J.

M. Horowitz, R. Daisy, B. Fisher, and J. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

Electron. Lett. (1)

M. Horowitz, R. Daisy, B. Fisher, and J. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Delavaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, IEEE Photon. Technol. Lett. 5, 73 (1993).
[CrossRef]

J. Non-Cryst. Solids (1)

N. V. Nikonorov, A. K. Przhevuskii, and A. V. Chukharev, J. Non-Cryst. Solids 324, 92 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Ukr. J. Phys. (1)

S. Stepanov and M. Plata, Ukr. J. Phys. 49, 389 (2004).

Other (3)

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999), Chap. 4.

R. C. Powell, Physics of Solid-State Laser Materials (Springer, 1998), Chap. 5.
[CrossRef]

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fluorescence decay (a) and growth (b) rates as functions of input light power P in observed in fiber samples 1 (dots) and 2 (squares) (modulation frequency, 15 Hz; number of chopper blades, 2). Inset, detected fluorescence intensity versus input light power; solid curves, theoretically predicted dependences calculated for P in = 0.5 mW .

Fig. 2
Fig. 2

Configuration of the Sagnac interferometer utilized for observation of transient TWM in Er-doped fibers: PC1, PC2, polarization controllers; EOM, electro-optic light modulator. Inset, rectangular phase modulation and typical response in the reflected light power.

Fig. 3
Fig. 3

TWM signal decay rates as functions of input light power P R , in observed in fiber samples 1 (dots) and 2 (squares). Solid and dashed lines represent original theoretical and shifted theoretical curves, respectively. Inset, the TWM relative amplitudes as functions of P R , in .

Fig. 4
Fig. 4

Normalized light-power profiles: a, P R ( z ) P sat ; b, P S ( z ) P sat calculated for α 0 L = 4 , P R , in P sat = 1 , and P R , in P S , in = 3 1 . Curve c shows the exponential power profile of the forward wave used in calculations, and curve d shows the profile of the estimated recorded grating amplitude (plotted in arbitrary units). Inset, dependence of the evaluated effective grating formation rate as a function of P R , in P sat .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ 1 = τ 0 1 ( 1 + I I sat ) .
τ g 1 = τ ( I 0 ) 1 + K 2 D = ( 1 + K 2 L D 2 ) τ ( I 0 ) .

Metrics