Abstract

A novel near-field imaging system is proposed and simulated. It is seen that a significant improvement in performance in the presence of noise is possible without loss of resolution.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commun. 71, 23 (1989).
    [CrossRef]
  2. C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).
    [CrossRef]
  3. J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
    [CrossRef]
  4. E. Abbe, Archiv. Mikroscopische Anat. 9, 413 (1873).
    [CrossRef]
  5. Lord Rayleigh, Philos. Mag. 8, 261 (1879).
    [CrossRef]
  6. E. Synge, Philos. Mag.,  6, 356 (1928).
  7. R. A. Frazin, D. G. Fischer, and P. S. Carney, J. Opt. Soc. Am. A 21, 1050 (2004).
    [CrossRef]
  8. D. G. Fischer and P. S. Carney, in Tribute to Emil Wolf: Science and Engineering Legacy of Physical Optics (SPIE, 2004).
  9. P. S. Carney and J. C. Schotland, in Inside Out: Inverse Problems, G. Uhlman, ed. (Cambridge U. Press, 2003).
  10. P. S. Carney and J. C. Schotland, J. Opt. A, Pure Appl. Opt. 4, S140 (2002).
    [CrossRef]
  11. P. S. Carney and J. C. Schotland, Appl. Phys. Lett. 77, 2798 (2000).
    [CrossRef]
  12. P. S. Carney and J. C. Schotland, J. Opt. Soc. Am. A 20, 542 (2003).
    [CrossRef]

2004 (1)

2003 (1)

2002 (1)

P. S. Carney and J. C. Schotland, J. Opt. A, Pure Appl. Opt. 4, S140 (2002).
[CrossRef]

2000 (1)

P. S. Carney and J. C. Schotland, Appl. Phys. Lett. 77, 2798 (2000).
[CrossRef]

1997 (1)

J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[CrossRef]

1996 (1)

C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).
[CrossRef]

1989 (1)

D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

1928 (1)

E. Synge, Philos. Mag.,  6, 356 (1928).

1879 (1)

Lord Rayleigh, Philos. Mag. 8, 261 (1879).
[CrossRef]

1873 (1)

E. Abbe, Archiv. Mikroscopische Anat. 9, 413 (1873).
[CrossRef]

Abbe, E.

E. Abbe, Archiv. Mikroscopische Anat. 9, 413 (1873).
[CrossRef]

Carminati, R.

J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[CrossRef]

Carney, P. S.

R. A. Frazin, D. G. Fischer, and P. S. Carney, J. Opt. Soc. Am. A 21, 1050 (2004).
[CrossRef]

P. S. Carney and J. C. Schotland, J. Opt. Soc. Am. A 20, 542 (2003).
[CrossRef]

P. S. Carney and J. C. Schotland, J. Opt. A, Pure Appl. Opt. 4, S140 (2002).
[CrossRef]

P. S. Carney and J. C. Schotland, Appl. Phys. Lett. 77, 2798 (2000).
[CrossRef]

D. G. Fischer and P. S. Carney, in Tribute to Emil Wolf: Science and Engineering Legacy of Physical Optics (SPIE, 2004).

P. S. Carney and J. C. Schotland, in Inside Out: Inverse Problems, G. Uhlman, ed. (Cambridge U. Press, 2003).

Courjon, D.

D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

Dereux, A.

C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).
[CrossRef]

Fischer, D. G.

R. A. Frazin, D. G. Fischer, and P. S. Carney, J. Opt. Soc. Am. A 21, 1050 (2004).
[CrossRef]

D. G. Fischer and P. S. Carney, in Tribute to Emil Wolf: Science and Engineering Legacy of Physical Optics (SPIE, 2004).

Frazin, R. A.

Girard, C.

C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).
[CrossRef]

Greffet, J.-J.

J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[CrossRef]

Rayleigh, Lord

Lord Rayleigh, Philos. Mag. 8, 261 (1879).
[CrossRef]

Sarayeddine, K.

D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

Schotland, J. C.

P. S. Carney and J. C. Schotland, J. Opt. Soc. Am. A 20, 542 (2003).
[CrossRef]

P. S. Carney and J. C. Schotland, J. Opt. A, Pure Appl. Opt. 4, S140 (2002).
[CrossRef]

P. S. Carney and J. C. Schotland, Appl. Phys. Lett. 77, 2798 (2000).
[CrossRef]

P. S. Carney and J. C. Schotland, in Inside Out: Inverse Problems, G. Uhlman, ed. (Cambridge U. Press, 2003).

Spajer, M.

D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

Synge, E.

E. Synge, Philos. Mag.,  6, 356 (1928).

Appl. Phys. Lett. (1)

P. S. Carney and J. C. Schotland, Appl. Phys. Lett. 77, 2798 (2000).
[CrossRef]

Archiv. Mikroscopische Anat. (1)

E. Abbe, Archiv. Mikroscopische Anat. 9, 413 (1873).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

P. S. Carney and J. C. Schotland, J. Opt. A, Pure Appl. Opt. 4, S140 (2002).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

Philos. Mag. (2)

Lord Rayleigh, Philos. Mag. 8, 261 (1879).
[CrossRef]

E. Synge, Philos. Mag.,  6, 356 (1928).

Prog. Surf. Sci. (1)

J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[CrossRef]

Rep. Prog. Phys. (1)

C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).
[CrossRef]

Other (2)

D. G. Fischer and P. S. Carney, in Tribute to Emil Wolf: Science and Engineering Legacy of Physical Optics (SPIE, 2004).

P. S. Carney and J. C. Schotland, in Inside Out: Inverse Problems, G. Uhlman, ed. (Cambridge U. Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Arrangement of the NDE imaging system.

Fig. 2
Fig. 2

Left, simulated PSF for three NDE systems, normalized to peak height. Right, normal operator for three simulations as a function of spatial frequency; a darker gray level indicates a proportionally larger bandpass weight. The top row is a simulation of a NSOM NDE with an effective radius of λ 16 and a NA of the far-field system of 0.5. The middle row is a simulation of a Fresnel plate NDE of 8 λ diameter with a spatial frequency from zero at the center to 8 λ 1 at the perimeter, with NA = 0.5 . The bottom row is also a simulation of the Fresnel NDE but with NA = 0.05 .

Fig. 3
Fig. 3

Singular value spectrum of three simulated imaging systems, normalized to the highest singular value of the NSOM case. The heavy solid curve is the standard NSOM singular value spectrum. The dashed curve is the Fresnel NDE case with NA = 0.05 , and the thin solid curve is the Fresnel NDE case with NA = 0.5.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U m ( r ) = k 0 4 d 3 r d 3 r U i ( r ) η ( r ) G ( r , r ) χ ( r ) G ( r , r ) ,
U m ( r , r 0 ) k 0 4 exp ( i k 0 r ) 2 π r d 2 q χ ̃ ( q ) exp ( i q r 0 ) M ( q , r ) η ̃ ( q k 0 r ̂ q i ) ,
M ( q , r ) = i
× exp { i [ k 0 z r k z ( q k 0 r ̂ ) ] z d } ( exp { i [ k 0 z r k z ( q k 0 r ̂ ) ] Δ z N D E } 1 ) ( 1 exp { i [ k z ( q k 0 r ̂ ) k z ( q ) ] Δ z s } ) k z ( q k 0 r ̂ ) [ k z ( q k 0 r ̂ ) k z ( q ) ] [ k 0 z r k z ( q k 0 r ̂ ) ] ,
U ̃ m ( r , Q ) = k 0 4 exp ( i k 0 r ) r M ( Q , r ) χ ̃ ( Q ) η ̃ ( Q k 0 r ̂ q i ) .
[ K * K ] ( Q , Q ) = δ ( Q Q ) S d 2 r ̂ M ( Q + k 0 r ̂ + q i , r ) χ ̃ ( Q + k 0 r ̂ + q i ) 2 ,
χ ( r ) = χ 0 cos ( π α r 2 ) for r < r 0 , χ ( r ) = 0 otherwise ,

Metrics