Abstract

High-performance true zero-order optical retarders were realized based on all-dielectric immersion nanogratings. All-dielectric nanolaminate materials, deposited by atomic layer deposition, were utilized to fill the trenches of the nanogratings to form immersion nanogratings. The refractive index of the nanolaminate material can be dialed and controlled precisely by controlling the ratio of the two compositions forming the nanolaminate material. This significantly improves the design and process windows for realizing precise optical retarders, particularly very-low-phase retarders. Three 100-mm-diameter very-low-phase retarders with highly precise and uniform phase retardance and very high transmittance were realized by use of the all-dielectric immersion grating design and an atomic layer deposition technique.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
    [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics, 6th ed. (Macmillan, 1964), Chap. 15.
  3. D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
    [CrossRef]
  4. A. G. Lopez and H. G. Craighead, Opt. Lett. 23, 1627 (1998).
    [CrossRef]
  5. J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.
  6. J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
    [CrossRef]
  7. M. Ritala and M. Leskela, in Handbook of Thin Film Materials, H. S. Nalwa, ed. (Academic, 2001), Vol. 1, pp. 103–159.
  8. R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003).
    [CrossRef]
  9. S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, Appl. Phys. Lett. 80, 2442 (2002).
    [CrossRef]
  10. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. B 12, 1077 (1995).
    [CrossRef]
  11. J. Wang, L. Chen, S. Tai, X. Deng, P. Sciortino, J. D. Deng, and F. Liu, J. Lightwave Technol. 23, 474 (2005).
    [CrossRef]
  12. J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
    [CrossRef]
  13. J. Wang and X. Deng, “Filling high aspect-ratio nano-structures by atomic layer deposition, and its applications in nano-optic devices and integrations,” unpublished results.

2005 (2)

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

J. Wang, L. Chen, S. Tai, X. Deng, P. Sciortino, J. D. Deng, and F. Liu, J. Lightwave Technol. 23, 474 (2005).
[CrossRef]

2003 (1)

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003).
[CrossRef]

2002 (1)

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, Appl. Phys. Lett. 80, 2442 (2002).
[CrossRef]

1999 (1)

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

1998 (1)

1995 (1)

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. B 12, 1077 (1995).
[CrossRef]

1983 (1)

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Macmillan, 1964), Chap. 15.

Chen, L.

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

J. Wang, L. Chen, S. Tai, X. Deng, P. Sciortino, J. D. Deng, and F. Liu, J. Lightwave Technol. 23, 474 (2005).
[CrossRef]

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

Chou, S. Y.

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

Craighead, H. G.

Deng, J.

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

Deng, J. D.

Deng, X.

J. Wang, L. Chen, S. Tai, X. Deng, P. Sciortino, J. D. Deng, and F. Liu, J. Lightwave Technol. 23, 474 (2005).
[CrossRef]

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

J. Wang and X. Deng, “Filling high aspect-ratio nano-structures by atomic layer deposition, and its applications in nano-optic devices and integrations,” unpublished results.

Flanders, D. C.

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

Gan, D.

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

Gaylord, T. K.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. B 12, 1077 (1995).
[CrossRef]

Gordon, R. G.

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003).
[CrossRef]

Graham, A.

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

Grann, E. B.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. B 12, 1077 (1995).
[CrossRef]

Hausmann, D.

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003).
[CrossRef]

Hodgkinson, I. J.

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
[CrossRef]

Huang, Y.

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

Jitsuno, T.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, Appl. Phys. Lett. 80, 2442 (2002).
[CrossRef]

Kim, E.

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003).
[CrossRef]

Leskela, M.

M. Ritala and M. Leskela, in Handbook of Thin Film Materials, H. S. Nalwa, ed. (Academic, 2001), Vol. 1, pp. 103–159.

Liu, F.

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

J. Wang, L. Chen, S. Tai, X. Deng, P. Sciortino, J. D. Deng, and F. Liu, J. Lightwave Technol. 23, 474 (2005).
[CrossRef]

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

Lopez, A. G.

Moharam, M. G.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. B 12, 1077 (1995).
[CrossRef]

Motokoshi, S.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, Appl. Phys. Lett. 80, 2442 (2002).
[CrossRef]

Nakatsuka, M.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, Appl. Phys. Lett. 80, 2442 (2002).
[CrossRef]

Nikolov, A.

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

Niu, X.

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

Park, Y. K.

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

Pommet, D. A.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. B 12, 1077 (1995).
[CrossRef]

Ritala, M.

M. Ritala and M. Leskela, in Handbook of Thin Film Materials, H. S. Nalwa, ed. (Academic, 2001), Vol. 1, pp. 103–159.

Schablitsky, S.

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

Sciortino, P.

J. Wang, L. Chen, S. Tai, X. Deng, P. Sciortino, J. D. Deng, and F. Liu, J. Lightwave Technol. 23, 474 (2005).
[CrossRef]

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

Shepard, J.

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003).
[CrossRef]

Tai, S.

Tseng, B.

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

Wang, J.

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

J. Wang, L. Chen, S. Tai, X. Deng, P. Sciortino, J. D. Deng, and F. Liu, J. Lightwave Technol. 23, 474 (2005).
[CrossRef]

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

J. Wang and X. Deng, “Filling high aspect-ratio nano-structures by atomic layer deposition, and its applications in nano-optic devices and integrations,” unpublished results.

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Macmillan, 1964), Chap. 15.

Wu, Q. H.

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
[CrossRef]

Wu, W.

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

Yamanaka, T.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, Appl. Phys. Lett. 80, 2442 (2002).
[CrossRef]

Yu, Z. N.

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

Zaitsu, S.

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, Appl. Phys. Lett. 80, 2442 (2002).
[CrossRef]

Zhang, W.

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

Appl. Phys. Lett. (2)

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, Appl. Phys. Lett. 80, 2442 (2002).
[CrossRef]

Chem. Vap. Deposition (1)

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. B 12, 1077 (1995).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

J. Wang, X. Deng, L. Chen, P. Sciortino, J. Deng, F. Liu, A. Nikolov, A. Graham, and Y. Huang, Proc. SPIE 5623, 259 (2005).
[CrossRef]

Other (5)

M. Ritala and M. Leskela, in Handbook of Thin Film Materials, H. S. Nalwa, ed. (Academic, 2001), Vol. 1, pp. 103–159.

J. Wang, W. Zhang, B. Tseng, A. Nikolov, X. Deng, F. Liu, D. Gan, X. Niu, L. Chen, P. Sciortino, and Y. K. Park, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 990–992.

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 6th ed. (Macmillan, 1964), Chap. 15.

J. Wang and X. Deng, “Filling high aspect-ratio nano-structures by atomic layer deposition, and its applications in nano-optic devices and integrations,” unpublished results.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of an optical retarder based on an all-dielectric immersion nanograting design. The initial grating was made from an optical material and the filling material (gray) is a different optical material with a higher or lower refractive index. Antireflective coatings (ARCs) are required for eliminating reflections.

Fig. 2
Fig. 2

Cross-sectional scanning electron microscope photograph of the nanograting (a) prior to filling. The grating has a depth of 390 nm with a period of 200 nm . ALD was used to fill the grating (b) with a nanolaminate Ti O 2 Si O 2 material. (c) Complete optical retarder with the top antireflective coating layers deposited by ALD as well.

Fig. 3
Fig. 3

Measured phase retardance of a 65 mm × 55 mm optical retarder made from all-dielectric immersion nanogratings. A retardation distribution of 5.3 ° ± 0.25 ° was shown.

Fig. 4
Fig. 4

(a) Measured (dark curve) and simulated (gray curve) transmittance of the optical retarder from 300 to 900 nm and (b) zoom-in from 450 to 650 nm . Excellent transmission of > 99.5 % across the green band ( 550 ± 50 nm ) was achieved.

Tables (1)

Tables Icon

Table 1 Refractive Indices and M Values of the Three Retarders

Metrics