Abstract

We have observed a backward-propagating terahertz wave by mixing two coherent infrared beams in two GaSe crystals. For the 47 mm long crystal, the output wavelength can be tuned in the wide range of 167.6 to 2060μm (0.146 to 1.79 THz), whereas the output peak power reaches 217 W. The corresponding power conversion efficiency is 0.03%.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
    [CrossRef]
  2. J. A. Giordmaine and R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
    [CrossRef]
  3. A. J. Campillo, IEEE J. Quantum Electron. 8, 809 (1972).
    [CrossRef]
  4. O. Aytür and P. Kumar, Phys. Rev. Lett. 65, 1551 (1990).
    [CrossRef]
  5. D. S. Chemla and E. Batifol, Opt. Commun. 11, 57 (1974).
    [CrossRef]
  6. Y. J. Ding and J. B. Khurgin, J. Opt. Soc. Am. B 15, 1567 (1998).
    [CrossRef]
  7. Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996).
    [CrossRef]
  8. Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).
    [CrossRef]
  9. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, 1997).
  10. E. D. Palik, Handbook of Optical Constants of Solids III (Academic, 1998).
  11. K. L. Vodopyanov and L. A. Kulevskii, Opt. Commun. 118, 375 (1995).
    [CrossRef]
  12. W. Shi and Y. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
    [CrossRef]
  13. R. W. Boyd, Nonlinear Optics (Academic, 1992).

2004 (1)

W. Shi and Y. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
[CrossRef]

1998 (2)

Y. J. Ding and J. B. Khurgin, J. Opt. Soc. Am. B 15, 1567 (1998).
[CrossRef]

Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).
[CrossRef]

1996 (1)

Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996).
[CrossRef]

1995 (1)

K. L. Vodopyanov and L. A. Kulevskii, Opt. Commun. 118, 375 (1995).
[CrossRef]

1990 (1)

O. Aytür and P. Kumar, Phys. Rev. Lett. 65, 1551 (1990).
[CrossRef]

1974 (1)

D. S. Chemla and E. Batifol, Opt. Commun. 11, 57 (1974).
[CrossRef]

1972 (1)

A. J. Campillo, IEEE J. Quantum Electron. 8, 809 (1972).
[CrossRef]

1966 (1)

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

1965 (1)

J. A. Giordmaine and R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
[CrossRef]

Aytür, O.

O. Aytür and P. Kumar, Phys. Rev. Lett. 65, 1551 (1990).
[CrossRef]

Batifol, E.

D. S. Chemla and E. Batifol, Opt. Commun. 11, 57 (1974).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Campillo, A. J.

A. J. Campillo, IEEE J. Quantum Electron. 8, 809 (1972).
[CrossRef]

Chemla, D. S.

D. S. Chemla and E. Batifol, Opt. Commun. 11, 57 (1974).
[CrossRef]

Ding, Y. J.

W. Shi and Y. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
[CrossRef]

Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).
[CrossRef]

Y. J. Ding and J. B. Khurgin, J. Opt. Soc. Am. B 15, 1567 (1998).
[CrossRef]

Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996).
[CrossRef]

Giordmaine, J. A.

J. A. Giordmaine and R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
[CrossRef]

Harris, S. E.

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

Khurgin, J. B.

Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).
[CrossRef]

Y. J. Ding and J. B. Khurgin, J. Opt. Soc. Am. B 15, 1567 (1998).
[CrossRef]

Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996).
[CrossRef]

Kulevskii, L. A.

K. L. Vodopyanov and L. A. Kulevskii, Opt. Commun. 118, 375 (1995).
[CrossRef]

Kumar, P.

O. Aytür and P. Kumar, Phys. Rev. Lett. 65, 1551 (1990).
[CrossRef]

Miller, R. C.

J. A. Giordmaine and R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
[CrossRef]

Nikogosyan, D. N.

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, 1997).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids III (Academic, 1998).

Shi, W.

W. Shi and Y. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
[CrossRef]

Vodopyanov, K. L.

K. L. Vodopyanov and L. A. Kulevskii, Opt. Commun. 118, 375 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

W. Shi and Y. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. J. Campillo, IEEE J. Quantum Electron. 8, 809 (1972).
[CrossRef]

Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

D. S. Chemla and E. Batifol, Opt. Commun. 11, 57 (1974).
[CrossRef]

K. L. Vodopyanov and L. A. Kulevskii, Opt. Commun. 118, 375 (1995).
[CrossRef]

Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

O. Aytür and P. Kumar, Phys. Rev. Lett. 65, 1551 (1990).
[CrossRef]

J. A. Giordmaine and R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
[CrossRef]

Other (3)

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, 1997).

E. D. Palik, Handbook of Optical Constants of Solids III (Academic, 1998).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Wave vectors of the three parametric waves that satisfy the phase-matching condition for a backward THz configuration: k p ( e ) k i ( o ) = k THz ( e ) . (b) Experimental setup for observing phase-matched backward DFG in a GaSe crystal. The tunable MOPO beam is the idler output from a MOPO based on two β - BaB 2 O 4 crystals pumped by the third-harmonic beam of a Nd:YAG laser at 355 nm.

Fig. 2
Fig. 2

Angle-tuning characteristics for the type- e o - e backward THz DFG in two GaSe crystals. Open circles and filled squares, our experimental DFG results for crystals 1 and 2, respectively; solid curve, theoretical result obtained by use of the phase-matching condition, Eq. (1).

Fig. 3
Fig. 3

Output peak power versus output wavelength for type e o - e phase-matched backward DFG in GaSe crystals: crystal 1, open circles; crystal 2, filled squares.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k p ( e ) k i ( o ) = k THz ( e )
P THz = ( π 2 4 ) ( λ i λ THz ) P p P i I th π w i 2 ,
I th = λ THz λ i n i ( o ) n THz ( e ) ( θ ) n p ( e ) ( θ ) 8 η 0 d eff 2 L 2 ,

Metrics