Abstract

We demonstrate a high-energy near-infrared cavity-dumped femtosecond optical parametric oscillator (OPO) based on periodically poled lithium niobate. The laser generates 90 nJ pulses at a repetition rate of up to 1 MHz when synchronously pumped by 800 mW output from a femtosecond Ti:sapphire laser. The laser is broadly tunable from 1.0 to 1.5μm in the signal branch, with a pulse duration of <60 fs at 1.2μm. High intracavity power is achieved by running the laser in the regime of positive group-velocity dispersion.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, Opt. Lett. 18, 1822 (1993).
    [CrossRef] [PubMed]
  2. M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Opt. Lett. 19, 572 (1994).
    [CrossRef] [PubMed]
  3. G. N. Gibson, R. Klank, F. Gibson, and B. E. Bouma, Opt. Lett. 21, 1055 (1996).
    [CrossRef] [PubMed]
  4. Q. Fu, G. Mak, and H. M. van Driel, Opt. Lett. 17, 1006 (1992)
    [CrossRef] [PubMed]
  5. W. S. Pelouch, P. E. Powers, and C. L. Tang, Opt. Lett. 17, 1070 (1992).
    [CrossRef] [PubMed]
  6. E. O. Potma, W. P. de Boeij, M. S. Pshenichnikov, and K. A. Wiersma, Opt. Lett. 23, 1763 (1998).
    [CrossRef]
  7. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
    [CrossRef]
  8. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Opt. Lett. 22, 1458 (1997).
    [CrossRef]
  9. P. Loza-Alvarez, C. T.A. Brown, D. T. Reid, W. Sibbett, and M. Missey, Opt. Lett. 24, 1523 (1999).
    [CrossRef]
  10. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, Opt. Lett. 26, 560 (2001).
    [CrossRef]
  11. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, Opt. Lett. 29, 1366 (2004).
    [CrossRef] [PubMed]
  12. H. Rhee and T. Joo, Opt. Lett. 30, 96 (2005).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

2001 (1)

1999 (1)

1998 (1)

1997 (2)

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Opt. Lett. 22, 1458 (1997).
[CrossRef]

1996 (1)

1994 (1)

1993 (1)

1992 (2)

Apolonski, A.

Arbore, M. A.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Opt. Lett. 22, 1458 (1997).
[CrossRef]

Bouma, B. E.

Brown, C. T.A.

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Opt. Lett. 22, 1458 (1997).
[CrossRef]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Cho, S. H.

Cunningham, J. E.

de Boeij, W. P.

Fejer, M. M.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Opt. Lett. 22, 1458 (1997).
[CrossRef]

Fernandez, A.

Fu, Q.

Fuji, T.

Fujimoto, J. G.

Fürbach, A.

Gibson, F.

Gibson, G. N.

Ippen, E. P.

Joo, T.

Kärtner, F. X.

Klank, R.

Knox, W. H.

Krausz, F.

Loza-Alvarez, P.

Mak, G.

Missey, M.

Morgner, U.

Paye, J.

Pelouch, W. S.

Poppe, A.

Potma, E. O.

Powers, P. E.

Pshenichnikov, M. S.

Ramaswamy, M.

Reid, D. T.

Rhee, H.

Sibbett, W.

Tang, C. L.

Ulman, M.

van Driel, H. M.

Wiersma, D. A.

Wiersma, K. A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the cavity-dumped near-infrared optical parametric oscillator. PPLN, 0.6 mm long mutigrating PPLN mounted in an oven; BC, TeO 2 Bragg Cell (Harris); P, SF11 equilateral prism; L, 10 cm focal-length plano–convex lens; M1–M6, spherical mirrors [the radii of curvature are M1–M2 ( R = 15 cm ) , M3–M4 ( R = 20 cm ) , M5 ( R = 15 cm ) , M6 ( R = 10 cm ) ]; PZT, 15 μ m travel piezoelectric actuator; PD, InGaAs photodiode (Hamamatsu). The cavity-dumped beam (dashed line) is displaced vertically from the cavity beam.

Fig. 2
Fig. 2

(a) Pulse energy of the cavity-dumped output as a function of cavity-dumping rate with a single (open circles) or double (filled circles) pumping geometry. (b) Pulse energy as a function of wavelength at a 500 kHz repetition rate. Two grating periods (19.95 and 20.5 μ m ) were used to obtain the curve.

Fig. 3
Fig. 3

(a) Noncollinear intensity autocorrelation using a 250 μ m LBO crystal. (b) Spectrum of the cavity-dumped signal beam. The solid curve in (a) is the fit assuming a Gaussian.

Fig. 4
Fig. 4

(a) Noncollinear intensity autocorrelation using a 250 μ m LBO crystal. (b) Spectrum of the second-harmonic pulses generated in a 250 μ m LBO crystal. The solid curve in (a) is the fit assuming a Gaussian.

Metrics