Abstract

We report on the experimental observation of two-wave mixing that occurs inside a sample between the beams used for the fabrication of polymer–liquid-crystal–polymer slices (POLICRYPS) diffraction gratings. The effect depends on the phase shift between the curing interference pattern and the grating being cured. This shift can be mechanically induced by accidental vibrations of the experimental setup; thus a high setup stability is needed. We devised a mechanism that enables us to control setup vibrations in situ and used it to monitor the experiment. When the mechanically induced shift was significantly small, wave mixing was observed only if the initial intensities of the two curing beams were different from each other.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Crawford and S Zumer, Liquid Crystals in Confined Geometries Formed by Polymer and Porous Networks (Taylor & Francis, 1996).
  2. F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, 1997).
    [CrossRef]
  3. J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
    [CrossRef]
  4. G. P. Crawford, T. G. Fiske, and L. D. Silverstein, SID Digest Tech. Papers 27, 99 (1996).
  5. A. Y.-G. Fuh, C.-Y. Huang, and B.-W. Tzen, Jpn. J. Appl. Phys., Part 1 33, 1088 (1994).
    [CrossRef]
  6. L. H. Domash, J. Schwartz, A. Nelson, and P. Levin, Proc. SPIE 1662, 221 (1992).
  7. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, Opt. Lett. 20, 1325 (1995).
    [CrossRef] [PubMed]
  8. A. Y.-G. Fuh, M.-S. Tsai, C.-J. Huang, and T.-C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
    [CrossRef]
  9. A. Y.-G. Fuh, C.-R. Lee, C.-C. Liao, K.-J. Shyu, P.-M. Liu, and K.-J. Lo, Opt. Commun. 187, 193 (2001).
    [CrossRef]
  10. C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 358, 185 (2001).
    [CrossRef]
  11. R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, Opt. Lett. 29, 1261 (2004).
    [CrossRef] [PubMed]
  12. R. Caputo, A. V. Sukhov, C. Umeton, and A. Veltri, J. Opt. Soc. Am. B 21, 1939 (2005).
    [CrossRef]
  13. A. Veltri, R. Caputo, A. V. Sukhov, and C. Umeton, Appl. Phys. Lett. 84, 3492 (2004).
    [CrossRef]
  14. T. K. Gaylord and M. G. Moharam, Appl. Opt. 20, 3271 (1981).
    [CrossRef] [PubMed]

2005 (1)

2004 (2)

A. Veltri, R. Caputo, A. V. Sukhov, and C. Umeton, Appl. Phys. Lett. 84, 3492 (2004).
[CrossRef]

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, Opt. Lett. 29, 1261 (2004).
[CrossRef] [PubMed]

2001 (2)

A. Y.-G. Fuh, C.-R. Lee, C.-C. Liao, K.-J. Shyu, P.-M. Liu, and K.-J. Lo, Opt. Commun. 187, 193 (2001).
[CrossRef]

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 358, 185 (2001).
[CrossRef]

1999 (1)

A. Y.-G. Fuh, M.-S. Tsai, C.-J. Huang, and T.-C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

1996 (1)

G. P. Crawford, T. G. Fiske, and L. D. Silverstein, SID Digest Tech. Papers 27, 99 (1996).

1995 (1)

1994 (1)

A. Y.-G. Fuh, C.-Y. Huang, and B.-W. Tzen, Jpn. J. Appl. Phys., Part 1 33, 1088 (1994).
[CrossRef]

1992 (1)

L. H. Domash, J. Schwartz, A. Nelson, and P. Levin, Proc. SPIE 1662, 221 (1992).

1986 (1)

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
[CrossRef]

1981 (1)

Adams, W. W.

Bowley, C. C.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 358, 185 (2001).
[CrossRef]

Bunning, T. J.

Caputo, R.

Crawford, G. P.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 358, 185 (2001).
[CrossRef]

G. P. Crawford, T. G. Fiske, and L. D. Silverstein, SID Digest Tech. Papers 27, 99 (1996).

G. P. Crawford and S Zumer, Liquid Crystals in Confined Geometries Formed by Polymer and Porous Networks (Taylor & Francis, 1996).

De Sio, L.

Doane, J. W.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
[CrossRef]

Domash, L. H.

L. H. Domash, J. Schwartz, A. Nelson, and P. Levin, Proc. SPIE 1662, 221 (1992).

Fiske, T. G.

G. P. Crawford, T. G. Fiske, and L. D. Silverstein, SID Digest Tech. Papers 27, 99 (1996).

Fuh, A. Y.-G.

A. Y.-G. Fuh, C.-R. Lee, C.-C. Liao, K.-J. Shyu, P.-M. Liu, and K.-J. Lo, Opt. Commun. 187, 193 (2001).
[CrossRef]

A. Y.-G. Fuh, M.-S. Tsai, C.-J. Huang, and T.-C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

A. Y.-G. Fuh, C.-Y. Huang, and B.-W. Tzen, Jpn. J. Appl. Phys., Part 1 33, 1088 (1994).
[CrossRef]

Gaylord, T. K.

Huang, C.-J.

A. Y.-G. Fuh, M.-S. Tsai, C.-J. Huang, and T.-C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

Huang, C.-Y.

A. Y.-G. Fuh, C.-Y. Huang, and B.-W. Tzen, Jpn. J. Appl. Phys., Part 1 33, 1088 (1994).
[CrossRef]

Lawandy, N. M.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 358, 185 (2001).
[CrossRef]

Lee, C.-R.

A. Y.-G. Fuh, C.-R. Lee, C.-C. Liao, K.-J. Shyu, P.-M. Liu, and K.-J. Lo, Opt. Commun. 187, 193 (2001).
[CrossRef]

Levin, P.

L. H. Domash, J. Schwartz, A. Nelson, and P. Levin, Proc. SPIE 1662, 221 (1992).

Liao, C.-C.

A. Y.-G. Fuh, C.-R. Lee, C.-C. Liao, K.-J. Shyu, P.-M. Liu, and K.-J. Lo, Opt. Commun. 187, 193 (2001).
[CrossRef]

Liu, P.-M.

A. Y.-G. Fuh, C.-R. Lee, C.-C. Liao, K.-J. Shyu, P.-M. Liu, and K.-J. Lo, Opt. Commun. 187, 193 (2001).
[CrossRef]

Liu, T.-C.

A. Y.-G. Fuh, M.-S. Tsai, C.-J. Huang, and T.-C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

Lo, K.-J.

A. Y.-G. Fuh, C.-R. Lee, C.-C. Liao, K.-J. Shyu, P.-M. Liu, and K.-J. Lo, Opt. Commun. 187, 193 (2001).
[CrossRef]

Moharam, M. G.

Natarajan, L. V.

Nelson, A.

L. H. Domash, J. Schwartz, A. Nelson, and P. Levin, Proc. SPIE 1662, 221 (1992).

Schwartz, J.

L. H. Domash, J. Schwartz, A. Nelson, and P. Levin, Proc. SPIE 1662, 221 (1992).

Shyu, K.-J.

A. Y.-G. Fuh, C.-R. Lee, C.-C. Liao, K.-J. Shyu, P.-M. Liu, and K.-J. Lo, Opt. Commun. 187, 193 (2001).
[CrossRef]

Silverstein, L. D.

G. P. Crawford, T. G. Fiske, and L. D. Silverstein, SID Digest Tech. Papers 27, 99 (1996).

Simoni, F.

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, 1997).
[CrossRef]

Smuk, A.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 358, 185 (2001).
[CrossRef]

Sukhov, A. V.

Sutherland, R. L.

Tondiglia, V. P.

Tsai, M.-S.

A. Y.-G. Fuh, M.-S. Tsai, C.-J. Huang, and T.-C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

Tzen, B.-W.

A. Y.-G. Fuh, C.-Y. Huang, and B.-W. Tzen, Jpn. J. Appl. Phys., Part 1 33, 1088 (1994).
[CrossRef]

Umeton, C.

Vaz, N. A.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
[CrossRef]

Veltri, A.

Wu, B.-G.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
[CrossRef]

Zumer, S

G. P. Crawford and S Zumer, Liquid Crystals in Confined Geometries Formed by Polymer and Porous Networks (Taylor & Francis, 1996).

Zumer, S.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Veltri, R. Caputo, A. V. Sukhov, and C. Umeton, Appl. Phys. Lett. 84, 3492 (2004).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
[CrossRef]

A. Y.-G. Fuh, M.-S. Tsai, C.-J. Huang, and T.-C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys., Part 1 (1)

A. Y.-G. Fuh, C.-Y. Huang, and B.-W. Tzen, Jpn. J. Appl. Phys., Part 1 33, 1088 (1994).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A (1)

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 358, 185 (2001).
[CrossRef]

Opt. Commun. (1)

A. Y.-G. Fuh, C.-R. Lee, C.-C. Liao, K.-J. Shyu, P.-M. Liu, and K.-J. Lo, Opt. Commun. 187, 193 (2001).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

L. H. Domash, J. Schwartz, A. Nelson, and P. Levin, Proc. SPIE 1662, 221 (1992).

SID Digest Tech. Papers (1)

G. P. Crawford, T. G. Fiske, and L. D. Silverstein, SID Digest Tech. Papers 27, 99 (1996).

Other (2)

G. P. Crawford and S Zumer, Liquid Crystals in Confined Geometries Formed by Polymer and Porous Networks (Taylor & Francis, 1996).

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, 1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Preliminary observation of wave mixing during the formation of a POLICRYPS grating. The two curing beams have the same intensity value. The effect is arrested after 1100 s , when the polymerization process is almost over.

Fig. 2
Fig. 2

Optical setup for UV curing of gratings with stability check. P, polarizer; λ 2 , half-wave plate; BE, beam expander; BS, beam splitter; 2 θ cur , total curing angle; M, mirrors; HS, hot stage; I, tunable aperture; S, sample; PD 1 , first beam photodetector; PD 2 , second beam photodetector; PD 3 , diffracted–reflected beam photodetector. Inset, the reference grating, immediately below the sample area, which allows the stability check.

Fig. 3
Fig. 3

Temporal dependencies of the intensity ratio of the curing beams transmitted through the sample. It is worth noting that there is no energy transfer in the case of R 0 = 1 (initial unit ratio of the beams).

Fig. 4
Fig. 4

Observed additional phase shift of the diffracted waves in the case of no jitter in the interference pattern.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( L ) = i exp ( i φ L ) E 2 in η + E 1 in 1 η ,
E 2 ( L ) = i exp ( i φ L ) E 1 in η + E 2 in 1 η .
R ( L ) = I 1 ( L ) I 2 ( L ) = η + ( 1 η ) R 0 + 2 sin ( φ L ) R 0 η ( 1 η ) η R 0 + ( 1 η ) 2 sin ( φ L ) R 0 η ( 1 η ) ,
I ref = I 1 + I 2 + 2 I 1 I 2 sin φ ref .

Metrics