Abstract

By operating an intracavity semiconductor-optical-amplifier- (SOA-) based high-pass filter at the nearly transparent current condition, the supermode noise (SMN), the relaxation oscillation, and the single-sideband (SSB) phase noise can be simultaneously suppressed in an actively mode-locked erbium-doped fiber laser (EDFL). The SOA at the nearly transparent condition enhances the SMN suppression ratio of the EDFL from 32to76dB at the cost of the phase noise degrading from 114to104.2dBcHz and broadening the pulse width from 36to61ps. With an optical bandpass filter, the SSB phase noise and the SMN suppression ratio can be further improved to 110dBcHz and 81dB, respectively. The EDFL pulse can be further shortened to 3.1ps with a time–bandwidth product of 0.63 after compression.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
    [CrossRef]
  2. K. K. Gupta, D. Novak, and H. F. Liu, IEEE J. Quantum Electron. 36, 70 (2000).
    [CrossRef]
  3. E. Yoshida, K. Kimura, and M. Nakazawa, Electron. Lett. 31, 377 (1995).
    [CrossRef]
  4. M. Nakazawa, K. Kimura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
    [CrossRef]
  5. H. Takara, S. Kawanishi, and M. Saruwatari, IEICE Trans. Electron. E81-C, 213 (1998).
  6. D. S. Seo, D. Y. Kim, and H. F. Liu, Electron. Lett. 32, 44 (1996).
    [CrossRef]
  7. L. Xu, I. Glesk, D. Rand, V. Baby, and P. R. Prucnal, Opt. Lett. 28, 780 (2003).
    [CrossRef] [PubMed]
  8. K. Sato and H. Toba, IEEE J. Sel. Top. Quantum Electron. 7, 328 (2001).
    [CrossRef]
  9. L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
    [CrossRef]
  10. D. von der Linde, Appl. Phys. B 39, 201 (1986).
    [CrossRef]
  11. T. Saitoh and T. Mukai, IEEE J. Quantum Electron. 23, 1010 (1987).
    [CrossRef]
  12. C. H. Henry, J. Lightwave Technol. 4, 288 (1986).
    [CrossRef]
  13. K. Kikuchi, C.-E. Zah, and T.-P. Lee, IEEE J. Quantum Electron. 27, 416 (1991).
    [CrossRef]

2003

2002

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

2001

K. Sato and H. Toba, IEEE J. Sel. Top. Quantum Electron. 7, 328 (2001).
[CrossRef]

2000

K. K. Gupta, D. Novak, and H. F. Liu, IEEE J. Quantum Electron. 36, 70 (2000).
[CrossRef]

1998

H. Takara, S. Kawanishi, and M. Saruwatari, IEICE Trans. Electron. E81-C, 213 (1998).

1996

D. S. Seo, D. Y. Kim, and H. F. Liu, Electron. Lett. 32, 44 (1996).
[CrossRef]

M. Nakazawa, K. Kimura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

1995

E. Yoshida, K. Kimura, and M. Nakazawa, Electron. Lett. 31, 377 (1995).
[CrossRef]

1992

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

1991

K. Kikuchi, C.-E. Zah, and T.-P. Lee, IEEE J. Quantum Electron. 27, 416 (1991).
[CrossRef]

1987

T. Saitoh and T. Mukai, IEEE J. Quantum Electron. 23, 1010 (1987).
[CrossRef]

1986

C. H. Henry, J. Lightwave Technol. 4, 288 (1986).
[CrossRef]

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Baby, V.

Dagenais, M.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

Dawson, J. W.

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

Duan, L.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

Glesk, I.

Goldhar, J.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

Gupta, K. K.

K. K. Gupta, D. Novak, and H. F. Liu, IEEE J. Quantum Electron. 36, 70 (2000).
[CrossRef]

Henry, C. H.

C. H. Henry, J. Lightwave Technol. 4, 288 (1986).
[CrossRef]

Hu, Z.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

Kawanishi, S.

H. Takara, S. Kawanishi, and M. Saruwatari, IEICE Trans. Electron. E81-C, 213 (1998).

Kikuchi, K.

K. Kikuchi, C.-E. Zah, and T.-P. Lee, IEEE J. Quantum Electron. 27, 416 (1991).
[CrossRef]

Kim, D. Y.

D. S. Seo, D. Y. Kim, and H. F. Liu, Electron. Lett. 32, 44 (1996).
[CrossRef]

Kimura, K.

M. Nakazawa, K. Kimura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

E. Yoshida, K. Kimura, and M. Nakazawa, Electron. Lett. 31, 377 (1995).
[CrossRef]

Lee, T.-P.

K. Kikuchi, C.-E. Zah, and T.-P. Lee, IEEE J. Quantum Electron. 27, 416 (1991).
[CrossRef]

Liu, H. F.

K. K. Gupta, D. Novak, and H. F. Liu, IEEE J. Quantum Electron. 36, 70 (2000).
[CrossRef]

D. S. Seo, D. Y. Kim, and H. F. Liu, Electron. Lett. 32, 44 (1996).
[CrossRef]

Mukai, T.

T. Saitoh and T. Mukai, IEEE J. Quantum Electron. 23, 1010 (1987).
[CrossRef]

Nakazawa, M.

M. Nakazawa, K. Kimura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

E. Yoshida, K. Kimura, and M. Nakazawa, Electron. Lett. 31, 377 (1995).
[CrossRef]

Novak, D.

K. K. Gupta, D. Novak, and H. F. Liu, IEEE J. Quantum Electron. 36, 70 (2000).
[CrossRef]

Park, N.

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

Prucnal, P. R.

Rand, D.

Richardson, C. J. K.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

Saitoh, T.

T. Saitoh and T. Mukai, IEEE J. Quantum Electron. 23, 1010 (1987).
[CrossRef]

Sanders, S.

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

Saruwatari, M.

H. Takara, S. Kawanishi, and M. Saruwatari, IEICE Trans. Electron. E81-C, 213 (1998).

Sato, K.

K. Sato and H. Toba, IEEE J. Sel. Top. Quantum Electron. 7, 328 (2001).
[CrossRef]

Seo, D. S.

D. S. Seo, D. Y. Kim, and H. F. Liu, Electron. Lett. 32, 44 (1996).
[CrossRef]

Takara, H.

H. Takara, S. Kawanishi, and M. Saruwatari, IEICE Trans. Electron. E81-C, 213 (1998).

Toba, H.

K. Sato and H. Toba, IEEE J. Sel. Top. Quantum Electron. 7, 328 (2001).
[CrossRef]

Vahala, K. J.

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

von der Linde, D.

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Xu, L.

Yoshida, E.

M. Nakazawa, K. Kimura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

E. Yoshida, K. Kimura, and M. Nakazawa, Electron. Lett. 31, 377 (1995).
[CrossRef]

Zah, C.-E.

K. Kikuchi, C.-E. Zah, and T.-P. Lee, IEEE J. Quantum Electron. 27, 416 (1991).
[CrossRef]

Appl. Phys. B

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Appl. Phys. Lett.

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

Electron. Lett.

E. Yoshida, K. Kimura, and M. Nakazawa, Electron. Lett. 31, 377 (1995).
[CrossRef]

M. Nakazawa, K. Kimura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

D. S. Seo, D. Y. Kim, and H. F. Liu, Electron. Lett. 32, 44 (1996).
[CrossRef]

IEEE J. Quantum Electron.

K. K. Gupta, D. Novak, and H. F. Liu, IEEE J. Quantum Electron. 36, 70 (2000).
[CrossRef]

T. Saitoh and T. Mukai, IEEE J. Quantum Electron. 23, 1010 (1987).
[CrossRef]

K. Kikuchi, C.-E. Zah, and T.-P. Lee, IEEE J. Quantum Electron. 27, 416 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Sato and H. Toba, IEEE J. Sel. Top. Quantum Electron. 7, 328 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

IEICE Trans. Electron.

H. Takara, S. Kawanishi, and M. Saruwatari, IEICE Trans. Electron. E81-C, 213 (1998).

J. Lightwave Technol.

C. H. Henry, J. Lightwave Technol. 4, 288 (1986).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of a SOA-filtered EDFL. MZM, Mach–Zehnder intensity modulator; PC, polarization controller; OC, optical coupler; EDFA, erbium-doped fiber amplifier; O/P, output.

Fig. 2
Fig. 2

(a) SMN spectrum [measured at a video bandwidth (VBW) and a resolution bandwidth (RBW) of 300 kHz and (b) pulse shape of a mode-locked EDFL without an intracavity SOA filter. (c) SMN spectrum and (d) pulse shape of a mode-locked EDFL with an intracavity SOA and OBPF. Inset, SMN spectrum measured at a VBW and RBW of 1 Hz .

Fig. 3
Fig. 3

SMN suppression ratios and the SSB phase noise of the mode-locked EDFL with a SOA filter (open and filled triangles, respectively) or with SOA and OBPF filters (open and filled squares, respectively) at different SOA currents.

Fig. 4
Fig. 4

Simulated (solid curve) and measured SSB phase noise as a function of the SOA gain for the SOA-filtered EDFL without (filled squares) and with OBPF (filled triangles).

Fig. 5
Fig. 5

(a) Autocorrelation trace and (b) lasing spectrum of a compressed EDFL pulse after passing through a fiber link with 11 m of DCF and 800 m of standard SMF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ϕ 1 ( f ) = h ν ( G 1 ) n sp G P in ,
S ϕ 2 ( f ) = ( 2 π K Γ λ A ) 2 4 G ( G 1 ) n sp τ e 2 P in h ν ( 2 π f τ e ) 2 + 1 ,

Metrics