Abstract

We report on a novel technique for sorting and identification of single biological cells and food-borne bacteria based on laser tweezers and Raman spectroscopy (LTRS). With this technique, biological cells of different physiological states in a sample chamber were identified by their Raman spectral signatures and then they were selectively manipulated into a clean collection chamber with optical tweezers through a microchannel. As an example, we sorted the live and dead yeast cells into the collection chamber and validated this with a standard staining technique. We also demonstrated that bacteria existing in spoiled foods could be discriminated from a variety of food particles based on their characteristic Raman spectra and then isolated with laser manipulation. This label-free LTRS sorting technique may find broad applications in microbiology and rapid examination of food-borne diseases.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
  2. A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
  3. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Science 283, 1689 (1999).
    [CrossRef]
  4. C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
    [CrossRef]
  5. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef]
  6. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
    [CrossRef]
  7. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [CrossRef]
  8. C. Xie, M. A. Dinno, and Y. Q. Li, Opt. Lett. 27, 249 (2002).
  9. C. Xie and Y. Q. Li, Appl. Phys. Lett. 81, 951 (2002).
    [CrossRef]
  10. C. Xie, Y. Q. Li, W. Tang, and R. J. Newton, J. Appl. Phys. 94, 6138 (2003).
    [CrossRef]
  11. K. C. Schuster, E. Urlaub, and J. R. Gapes, J. Microbiol. Methods 42, 29 (2000).
    [CrossRef]
  12. K. Ramser, K. Logg, M. Goksor, M. Kall, and D. Hanstorp, J. Biomed. Opt. 9, 593 (2004).
    [CrossRef]
  13. J. M. Sanderson and A. D. Ward, Chem. Commun. (Cambridge) 7, 1120 (2004).
  14. J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, Anal. Chem. 76, 599 (2004).
  15. A. L. Givan, Flow Cytometry: First Principles, 2nd ed. (Wiley, 2001), p. 170.
  16. J. Góral and V. Zichy, Spectrochim. Acta, Part A 46, 253 (1990).

2004

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

K. Ramser, K. Logg, M. Goksor, M. Kall, and D. Hanstorp, J. Biomed. Opt. 9, 593 (2004).
[CrossRef]

J. M. Sanderson and A. D. Ward, Chem. Commun. (Cambridge) 7, 1120 (2004).

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, Anal. Chem. 76, 599 (2004).

2003

C. Xie, Y. Q. Li, W. Tang, and R. J. Newton, J. Appl. Phys. 94, 6138 (2003).
[CrossRef]

C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
[CrossRef]

D. G. Grier, Nature 424, 810 (2003).
[CrossRef]

2002

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

C. Xie and Y. Q. Li, Appl. Phys. Lett. 81, 951 (2002).
[CrossRef]

C. Xie, M. A. Dinno, and Y. Q. Li, Opt. Lett. 27, 249 (2002).

2000

K. C. Schuster, E. Urlaub, and J. R. Gapes, J. Microbiol. Methods 42, 29 (2000).
[CrossRef]

1999

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Science 283, 1689 (1999).
[CrossRef]

1990

J. Góral and V. Zichy, Spectrochim. Acta, Part A 46, 253 (1990).

1987

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).

1986

Ashkin, A.

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Bryant, Z.

C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
[CrossRef]

Bustamante, C.

C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
[CrossRef]

Chan, J. W.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, Anal. Chem. 76, 599 (2004).

Chu, S.

Dholakia, K.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Dinno, M. A.

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).

Esposito, A. P.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, Anal. Chem. 76, 599 (2004).

Gapes, J. R.

K. C. Schuster, E. Urlaub, and J. R. Gapes, J. Microbiol. Methods 42, 29 (2000).
[CrossRef]

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Givan, A. L.

A. L. Givan, Flow Cytometry: First Principles, 2nd ed. (Wiley, 2001), p. 170.

Goksor, M.

K. Ramser, K. Logg, M. Goksor, M. Kall, and D. Hanstorp, J. Biomed. Opt. 9, 593 (2004).
[CrossRef]

Góral, J.

J. Góral and V. Zichy, Spectrochim. Acta, Part A 46, 253 (1990).

Grier, D. G.

D. G. Grier, Nature 424, 810 (2003).
[CrossRef]

Hanstorp, D.

K. Ramser, K. Logg, M. Goksor, M. Kall, and D. Hanstorp, J. Biomed. Opt. 9, 593 (2004).
[CrossRef]

Hollars, C. W.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, Anal. Chem. 76, 599 (2004).

Huser, T.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, Anal. Chem. 76, 599 (2004).

Kall, M.

K. Ramser, K. Logg, M. Goksor, M. Kall, and D. Hanstorp, J. Biomed. Opt. 9, 593 (2004).
[CrossRef]

Lane, S. M.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, Anal. Chem. 76, 599 (2004).

Li, Y. Q.

C. Xie, Y. Q. Li, W. Tang, and R. J. Newton, J. Appl. Phys. 94, 6138 (2003).
[CrossRef]

C. Xie, M. A. Dinno, and Y. Q. Li, Opt. Lett. 27, 249 (2002).

C. Xie and Y. Q. Li, Appl. Phys. Lett. 81, 951 (2002).
[CrossRef]

Logg, K.

K. Ramser, K. Logg, M. Goksor, M. Kall, and D. Hanstorp, J. Biomed. Opt. 9, 593 (2004).
[CrossRef]

McGloin, D.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Mehta, A. D.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Science 283, 1689 (1999).
[CrossRef]

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Newton, R. J.

C. Xie, Y. Q. Li, W. Tang, and R. J. Newton, J. Appl. Phys. 94, 6138 (2003).
[CrossRef]

Ramser, K.

K. Ramser, K. Logg, M. Goksor, M. Kall, and D. Hanstorp, J. Biomed. Opt. 9, 593 (2004).
[CrossRef]

Rief, M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Science 283, 1689 (1999).
[CrossRef]

Sanderson, J. M.

J. M. Sanderson and A. D. Ward, Chem. Commun. (Cambridge) 7, 1120 (2004).

Schuster, K. C.

K. C. Schuster, E. Urlaub, and J. R. Gapes, J. Microbiol. Methods 42, 29 (2000).
[CrossRef]

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Simmons, R. M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Science 283, 1689 (1999).
[CrossRef]

Smith, D. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Science 283, 1689 (1999).
[CrossRef]

Smith, S. B.

C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
[CrossRef]

Spudich, J. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Science 283, 1689 (1999).
[CrossRef]

Talley, C. E.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, Anal. Chem. 76, 599 (2004).

Tang, W.

C. Xie, Y. Q. Li, W. Tang, and R. J. Newton, J. Appl. Phys. 94, 6138 (2003).
[CrossRef]

Urlaub, E.

K. C. Schuster, E. Urlaub, and J. R. Gapes, J. Microbiol. Methods 42, 29 (2000).
[CrossRef]

Ward, A. D.

J. M. Sanderson and A. D. Ward, Chem. Commun. (Cambridge) 7, 1120 (2004).

Xie, C.

C. Xie, Y. Q. Li, W. Tang, and R. J. Newton, J. Appl. Phys. 94, 6138 (2003).
[CrossRef]

C. Xie, M. A. Dinno, and Y. Q. Li, Opt. Lett. 27, 249 (2002).

C. Xie and Y. Q. Li, Appl. Phys. Lett. 81, 951 (2002).
[CrossRef]

Zichy, V.

J. Góral and V. Zichy, Spectrochim. Acta, Part A 46, 253 (1990).

Anal. Chem.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, Anal. Chem. 76, 599 (2004).

Appl. Phys. Lett.

C. Xie and Y. Q. Li, Appl. Phys. Lett. 81, 951 (2002).
[CrossRef]

Chem. Commun. (Cambridge)

J. M. Sanderson and A. D. Ward, Chem. Commun. (Cambridge) 7, 1120 (2004).

J. Appl. Phys.

C. Xie, Y. Q. Li, W. Tang, and R. J. Newton, J. Appl. Phys. 94, 6138 (2003).
[CrossRef]

J. Biomed. Opt.

K. Ramser, K. Logg, M. Goksor, M. Kall, and D. Hanstorp, J. Biomed. Opt. 9, 593 (2004).
[CrossRef]

J. Microbiol. Methods

K. C. Schuster, E. Urlaub, and J. R. Gapes, J. Microbiol. Methods 42, 29 (2000).
[CrossRef]

Nature

C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
[CrossRef]

D. G. Grier, Nature 424, 810 (2003).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Science

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, Science 283, 1689 (1999).
[CrossRef]

Spectrochim. Acta, Part A

J. Góral and V. Zichy, Spectrochim. Acta, Part A 46, 253 (1990).

Other

A. L. Givan, Flow Cytometry: First Principles, 2nd ed. (Wiley, 2001), p. 170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of LTRS sorting and identification. A particle in the sample chamber is captured with laser tweezers, identified by Raman spectrum, and then optically manipulated to a clean collection chamber.

Fig. 2
Fig. 2

(a) Near-infrared Raman spectra of single live yeast cells (curve A) and dead yeast cells (curve B) in a batch culture. The acquisition time was 20 s with a laser power of 17 mw at 785 nm. Tyr, tyrosine; phe, phenylalanine; def, deformed. (b) Image of the sorted yeast cells in the collection chamber. Top row, dead yeast cells; bottom row, live yeast cells. (c) Image of the sorted yeast cells stained with 2% eosin solution.

Fig. 3
Fig. 3

(a) Near-infrared Raman spectra of three types of microparticles found in a spoiled milk sample. Curve A, spherical particles 1 and 2; curve B, spherical particles 3 and 4; curve C, rodlike particles 5 and 6. The acquisition time was 20 s for curve A and 60 s for curves B and C with a power of 20 mW. (b) Image of the microparticles in an aqueous spoiled milk sample. (c) Image of an isolated bacterial cell (particle 6) that was optically manipulated to a new location.

Metrics