Abstract

A Bragg grating in a photonic crystal fiber was written and its dependence with temperature and strain analyzed. The two observed Bragg wavelengths correspond to a fundamental and a higher-order mode in the optical fiber. The temperature and strain calibration curves for both modes are measured and found to be distinct. The general properties of gratings in these fibers, and their implications, are enunciated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, 2003).
    [CrossRef]
  2. J. Canning, E. Buckley, and K. Lyytikainen, Opt. Express 11, 347 (2003).
    [CrossRef] [PubMed]
  3. N. Groothoff, J. Canning, E. Buckley, K. Lyytikainen, and J. Zagari, Opt. Lett. 28, 233 (2003).
    [CrossRef] [PubMed]
  4. S. Trpkovski, S. A. Wade, S. F. Collins, G. W. Baxter, and P. M. Farrell, in Optical Fiber Sensors Conference Technical Digest (IEEE Press, 2002), Vol. 1, p. 107.
  5. J. Canning, N. Groothoff, E. Buckley, T. Ryan, K. Lyytikainen, and J. Digweed, Opt. Express 11, 1995 (2003).
    [CrossRef] [PubMed]
  6. M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, Appl. Opt. 42, 6578 (2003).
    [CrossRef]
  7. A. Othonos and G. Kalli, Fiber Bragg Grating (Artech, 1999).
  8. R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmansa, and H. Thienpont, in Proceedings of 2003 5th International Conference on Transparent Optical Networks (IEEE Press, 2003), Vol. 1, pp. 340–343.
  9. D. Ferrarini, L. Vincentti, M. Zoboli, A. Cucinotta, and S. Selleri, Opt. Express 10, 1314 (2002).
    [CrossRef] [PubMed]
  10. K. Lyytikäinen, “Control of complex structural geometry in optical fibre drawing,” Ph.D. dissertation (School of Physics and Optical Fibre Technology Centre, University of Sydney, 2004).

2003 (4)

2002 (1)

Antkowiak, M.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmansa, and H. Thienpont, in Proceedings of 2003 5th International Conference on Transparent Optical Networks (IEEE Press, 2003), Vol. 1, pp. 340–343.

Åslund, M.

Baxter, G. W.

S. Trpkovski, S. A. Wade, S. F. Collins, G. W. Baxter, and P. M. Farrell, in Optical Fiber Sensors Conference Technical Digest (IEEE Press, 2002), Vol. 1, p. 107.

Berghmansa, F.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmansa, and H. Thienpont, in Proceedings of 2003 5th International Conference on Transparent Optical Networks (IEEE Press, 2003), Vol. 1, pp. 340–343.

Bjarklev, A.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, 2003).
[CrossRef]

Bjarklev, A. S.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, 2003).
[CrossRef]

Broeng, J.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, 2003).
[CrossRef]

Buckley, E.

Canning, J.

Collins, S. F.

S. Trpkovski, S. A. Wade, S. F. Collins, G. W. Baxter, and P. M. Farrell, in Optical Fiber Sensors Conference Technical Digest (IEEE Press, 2002), Vol. 1, p. 107.

Cucinotta, A.

de Sterke, C. M.

Digweed, J.

Farrell, P. M.

S. Trpkovski, S. A. Wade, S. F. Collins, G. W. Baxter, and P. M. Farrell, in Optical Fiber Sensors Conference Technical Digest (IEEE Press, 2002), Vol. 1, p. 107.

Ferrarini, D.

Groothoff, N.

Judge, A.

Kalli, G.

A. Othonos and G. Kalli, Fiber Bragg Grating (Artech, 1999).

Kotynski, R.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmansa, and H. Thienpont, in Proceedings of 2003 5th International Conference on Transparent Optical Networks (IEEE Press, 2003), Vol. 1, pp. 340–343.

Lyytikainen, K.

Lyytikäinen, K.

K. Lyytikäinen, “Control of complex structural geometry in optical fibre drawing,” Ph.D. dissertation (School of Physics and Optical Fibre Technology Centre, University of Sydney, 2004).

Nasilowski, T.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmansa, and H. Thienpont, in Proceedings of 2003 5th International Conference on Transparent Optical Networks (IEEE Press, 2003), Vol. 1, pp. 340–343.

Othonos, A.

A. Othonos and G. Kalli, Fiber Bragg Grating (Artech, 1999).

Poladian, L.

Ryan, T.

Selleri, S.

Thienpont, H.

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmansa, and H. Thienpont, in Proceedings of 2003 5th International Conference on Transparent Optical Networks (IEEE Press, 2003), Vol. 1, pp. 340–343.

Trpkovski, S.

S. Trpkovski, S. A. Wade, S. F. Collins, G. W. Baxter, and P. M. Farrell, in Optical Fiber Sensors Conference Technical Digest (IEEE Press, 2002), Vol. 1, p. 107.

Vincentti, L.

Wade, S. A.

S. Trpkovski, S. A. Wade, S. F. Collins, G. W. Baxter, and P. M. Farrell, in Optical Fiber Sensors Conference Technical Digest (IEEE Press, 2002), Vol. 1, p. 107.

Zagari, J.

Zoboli, M.

Appl. Opt. (1)

Opt. Express (3)

Opt. Lett. (1)

Other (5)

S. Trpkovski, S. A. Wade, S. F. Collins, G. W. Baxter, and P. M. Farrell, in Optical Fiber Sensors Conference Technical Digest (IEEE Press, 2002), Vol. 1, p. 107.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, 2003).
[CrossRef]

K. Lyytikäinen, “Control of complex structural geometry in optical fibre drawing,” Ph.D. dissertation (School of Physics and Optical Fibre Technology Centre, University of Sydney, 2004).

A. Othonos and G. Kalli, Fiber Bragg Grating (Artech, 1999).

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmansa, and H. Thienpont, in Proceedings of 2003 5th International Conference on Transparent Optical Networks (IEEE Press, 2003), Vol. 1, pp. 340–343.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission signal of the FBG inscribed in the Er 3 + PCF. The notch at longer wavelengths (1) corresponds to a Bragg wavelength for the fundamental mode and the notch at shorter wavelengths (2) to the high-order mode. The inset is the PCF profile.

Fig. 2
Fig. 2

Experimental setup used to characterize the FBG. EDFA, erbium-doped fiber amplifier; OSA, optical spectrum analyzer.

Fig. 3
Fig. 3

Dependence of the grating wavelengths with temperature. The solid curves correspond to the best fits. Both modes have linear temperature response profiles.

Fig. 4
Fig. 4

Strain characterization of the Bragg grating inscribed in a PCF. The solid curves are the best fits for the experimental data. The fundamental mode has a linear response to the applied strain, and the high-order mode has a quadratic response. Δ L and L are the applied displacement and the fiber length, respectively.

Metrics