Abstract

The influence of some critical structural variations in high-Q microcavities in two-dimensional photonic crystal slabs is investigated. All the cavities studied maintain a high Q in a wide range of structural variations, while the resonant frequencies shift on a relatively large scale when the structural variations are comparable to the physical sizes of the cavities.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Srinivasan and O. Painter, Opt. Express 10, 670 (2002).
    [CrossRef] [PubMed]
  2. J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
    [CrossRef]
  3. K. Srinivasan and O. Painter, Opt. Express 11, 579 (2003).
    [CrossRef] [PubMed]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
    [CrossRef] [PubMed]
  5. H. Y. Ryu, M. Notomi, and Y. H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
    [CrossRef]
  6. Z. Zhang and M. Qiu, Opt. Express 12, 3988 (2004).
    [CrossRef] [PubMed]
  7. K. Srinivasan, P. E. Barclay, and O. Painter, Opt. Express 12, 1458 (2004).
    [CrossRef] [PubMed]
  8. M. Qiu, Microwave Opt. Technol. Lett. 45, 381 (2005).
    [CrossRef]
  9. W. H. Guo, W. J. Li, and Y. Z. Huang, IEEE Microw. Wirel. Compon. Lett. 11, 223 (2001).
    [CrossRef]
  10. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
    [CrossRef]
  11. L. Thylén, M. Qiu, and S. Anand, ChemPhysChem 5, 1268 (2004).
    [CrossRef]

2005 (1)

M. Qiu, Microwave Opt. Technol. Lett. 45, 381 (2005).
[CrossRef]

2004 (3)

2003 (3)

K. Srinivasan and O. Painter, Opt. Express 11, 579 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

H. Y. Ryu, M. Notomi, and Y. H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
[CrossRef]

2002 (2)

K. Srinivasan and O. Painter, Opt. Express 10, 670 (2002).
[CrossRef] [PubMed]

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

2001 (1)

W. H. Guo, W. J. Li, and Y. Z. Huang, IEEE Microw. Wirel. Compon. Lett. 11, 223 (2001).
[CrossRef]

1999 (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Anand, S.

L. Thylén, M. Qiu, and S. Anand, ChemPhysChem 5, 1268 (2004).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Barclay, P. E.

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Guo, W. H.

W. H. Guo, W. J. Li, and Y. Z. Huang, IEEE Microw. Wirel. Compon. Lett. 11, 223 (2001).
[CrossRef]

Huang, Y. Z.

W. H. Guo, W. J. Li, and Y. Z. Huang, IEEE Microw. Wirel. Compon. Lett. 11, 223 (2001).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Lee, Y. H.

H. Y. Ryu, M. Notomi, and Y. H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
[CrossRef]

Li, W. J.

W. H. Guo, W. J. Li, and Y. Z. Huang, IEEE Microw. Wirel. Compon. Lett. 11, 223 (2001).
[CrossRef]

Loncar, M.

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

Mabuchi, H.

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Notomi, M.

H. Y. Ryu, M. Notomi, and Y. H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
[CrossRef]

Painter, O.

Qiu, M.

M. Qiu, Microwave Opt. Technol. Lett. 45, 381 (2005).
[CrossRef]

L. Thylén, M. Qiu, and S. Anand, ChemPhysChem 5, 1268 (2004).
[CrossRef]

Z. Zhang and M. Qiu, Opt. Express 12, 3988 (2004).
[CrossRef] [PubMed]

Ryu, H. Y.

H. Y. Ryu, M. Notomi, and Y. H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
[CrossRef]

Scherer, A.

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

Thylén, L.

L. Thylén, M. Qiu, and S. Anand, ChemPhysChem 5, 1268 (2004).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Vuckovic, J.

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

Zhang, Z.

Appl. Phys. Lett. (1)

H. Y. Ryu, M. Notomi, and Y. H. Lee, Appl. Phys. Lett. 83, 4294 (2003).
[CrossRef]

ChemPhysChem (1)

L. Thylén, M. Qiu, and S. Anand, ChemPhysChem 5, 1268 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

W. H. Guo, W. J. Li, and Y. Z. Huang, IEEE Microw. Wirel. Compon. Lett. 11, 223 (2001).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

M. Qiu, Microwave Opt. Technol. Lett. 45, 381 (2005).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. B (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the M1 cavity. The slab refractive index is 3.4, and the slab thickness is 0.7 a . (b) Top view of the M1 cavity. R 2 = R = 0.29 a , d = 0.21 a , R 1 = 0.22 a . (c) H z field distribution of the M1 mode in the center of the slab.

Fig. 2
Fig. 2

(a) Q factor of the M1 mode versus d and parameter R 1 . (b) Resonant wavelength in nanometers, relative to 1550.9 nm , of the M1 mode versus d and R 1 .

Fig. 3
Fig. 3

(a) Top view of the M0 cavity. R = 0.29 a , d = 0.14 a , R 1 = 0.27 a ; other parameters are the same as in the M1 cavity. (b) H z field distribution of the M0 mode in the center of the slab.

Fig. 4
Fig. 4

(a) Q factor and (b) resonant wavelength (relative to 1558.1 nm ) of the M0 mode versus d and R 1 .

Fig. 5
Fig. 5

(a) Top view of the three-missing-hole cavity. R = 0.29 a , t = 0.6 a , d = 0.19 a . (b) H z field distribution of the three-missing-hole cavity mode in the center of the slab.

Fig. 6
Fig. 6

Q factor (curve with diamonds) and resonant wavelength (curve with circles) for the three-missing-hole cavity mode versus d.

Metrics