Abstract

A portable fluorescence cytometric system has been developed for characterizing chemical concentration and cellular status in microscale cell culture analog (μCCA) devices. Based on discrete optical components, the system provides a modular platform for real-time image measurements applicable to a variety of cell-based microassays. As a feasibility study, we investigated the real-time dynamics of daunorubicin uptake with cultured mouse L-cells in a μCCA compartment. Time course results measured by the portable fluorescence cytometric system confirmed that in the μCCA devices daunorubicin accumulation is proportional to the liquid turnover rate.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Sweeney, M. L. Shuler, J. G. Babish, and A. Ghanem, Toxicol. In Vitro 9, 307 (1995).
    [CrossRef] [PubMed]
  2. A. Ghanem and M. L. Shuler, Biotechnol. Prog. 16, 334 (2000).
    [CrossRef] [PubMed]
  3. A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, Biotechnol. Prog. 20, 338 (2004).
    [CrossRef] [PubMed]
  4. K. Viravaidya, A. Sin, and M. L. Shuler, Biotechnol. Prog. 20, 316 (2004).
    [CrossRef] [PubMed]
  5. M. W. Davidson and M. Abramowitz, Optical Microscopy (Olympus America, 1999).
  6. A. Periasamy, ed., Methods in Cellular Imaging (Oxford U. Press, 2001).
    [CrossRef]
  7. S. Landry, P. L. McGhee, R. J. Girardin, and W. J. Keeler, Opt. Express 12, 5754 (2004).
    [CrossRef] [PubMed]
  8. A. Laigle, M. M.L. Fiallo, and A. Garnier-Suillerot, Chem. Biol. Interact. 101, 49 (1996).
    [CrossRef] [PubMed]

2004

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, Biotechnol. Prog. 20, 338 (2004).
[CrossRef] [PubMed]

K. Viravaidya, A. Sin, and M. L. Shuler, Biotechnol. Prog. 20, 316 (2004).
[CrossRef] [PubMed]

S. Landry, P. L. McGhee, R. J. Girardin, and W. J. Keeler, Opt. Express 12, 5754 (2004).
[CrossRef] [PubMed]

2000

A. Ghanem and M. L. Shuler, Biotechnol. Prog. 16, 334 (2000).
[CrossRef] [PubMed]

1996

A. Laigle, M. M.L. Fiallo, and A. Garnier-Suillerot, Chem. Biol. Interact. 101, 49 (1996).
[CrossRef] [PubMed]

1995

L. M. Sweeney, M. L. Shuler, J. G. Babish, and A. Ghanem, Toxicol. In Vitro 9, 307 (1995).
[CrossRef] [PubMed]

Abramowitz, M.

M. W. Davidson and M. Abramowitz, Optical Microscopy (Olympus America, 1999).

Babish, J. G.

L. M. Sweeney, M. L. Shuler, J. G. Babish, and A. Ghanem, Toxicol. In Vitro 9, 307 (1995).
[CrossRef] [PubMed]

Chin, K. C.

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, Biotechnol. Prog. 20, 338 (2004).
[CrossRef] [PubMed]

Davidson, M. W.

M. W. Davidson and M. Abramowitz, Optical Microscopy (Olympus America, 1999).

Fiallo, M. M.L.

A. Laigle, M. M.L. Fiallo, and A. Garnier-Suillerot, Chem. Biol. Interact. 101, 49 (1996).
[CrossRef] [PubMed]

Garnier-Suillerot, A.

A. Laigle, M. M.L. Fiallo, and A. Garnier-Suillerot, Chem. Biol. Interact. 101, 49 (1996).
[CrossRef] [PubMed]

Ghanem, A.

A. Ghanem and M. L. Shuler, Biotechnol. Prog. 16, 334 (2000).
[CrossRef] [PubMed]

L. M. Sweeney, M. L. Shuler, J. G. Babish, and A. Ghanem, Toxicol. In Vitro 9, 307 (1995).
[CrossRef] [PubMed]

Girardin, R. J.

Jamil, M. F.

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, Biotechnol. Prog. 20, 338 (2004).
[CrossRef] [PubMed]

Keeler, W. J.

Kostov, Y.

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, Biotechnol. Prog. 20, 338 (2004).
[CrossRef] [PubMed]

Laigle, A.

A. Laigle, M. M.L. Fiallo, and A. Garnier-Suillerot, Chem. Biol. Interact. 101, 49 (1996).
[CrossRef] [PubMed]

Landry, S.

McGhee, P. L.

Rao, G.

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, Biotechnol. Prog. 20, 338 (2004).
[CrossRef] [PubMed]

Shuler, M. L.

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, Biotechnol. Prog. 20, 338 (2004).
[CrossRef] [PubMed]

K. Viravaidya, A. Sin, and M. L. Shuler, Biotechnol. Prog. 20, 316 (2004).
[CrossRef] [PubMed]

A. Ghanem and M. L. Shuler, Biotechnol. Prog. 16, 334 (2000).
[CrossRef] [PubMed]

L. M. Sweeney, M. L. Shuler, J. G. Babish, and A. Ghanem, Toxicol. In Vitro 9, 307 (1995).
[CrossRef] [PubMed]

Sin, A.

K. Viravaidya, A. Sin, and M. L. Shuler, Biotechnol. Prog. 20, 316 (2004).
[CrossRef] [PubMed]

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, Biotechnol. Prog. 20, 338 (2004).
[CrossRef] [PubMed]

Sweeney, L. M.

L. M. Sweeney, M. L. Shuler, J. G. Babish, and A. Ghanem, Toxicol. In Vitro 9, 307 (1995).
[CrossRef] [PubMed]

Viravaidya, K.

K. Viravaidya, A. Sin, and M. L. Shuler, Biotechnol. Prog. 20, 316 (2004).
[CrossRef] [PubMed]

Biotechnol. Prog.

A. Ghanem and M. L. Shuler, Biotechnol. Prog. 16, 334 (2000).
[CrossRef] [PubMed]

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, Biotechnol. Prog. 20, 338 (2004).
[CrossRef] [PubMed]

K. Viravaidya, A. Sin, and M. L. Shuler, Biotechnol. Prog. 20, 316 (2004).
[CrossRef] [PubMed]

Chem. Biol. Interact.

A. Laigle, M. M.L. Fiallo, and A. Garnier-Suillerot, Chem. Biol. Interact. 101, 49 (1996).
[CrossRef] [PubMed]

Opt. Express

Toxicol. In Vitro

L. M. Sweeney, M. L. Shuler, J. G. Babish, and A. Ghanem, Toxicol. In Vitro 9, 307 (1995).
[CrossRef] [PubMed]

Other

M. W. Davidson and M. Abramowitz, Optical Microscopy (Olympus America, 1999).

A. Periasamy, ed., Methods in Cellular Imaging (Oxford U. Press, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the fluorescence detection system considered in this study. The system is based on dark-field illumination: LED, eight light-emitting diodes ( λ = 465 nm ) mounted on a cone-shaped support; L1, imaging lens ( f # = 1.5 ) ; FC, filter cube; L2, relay lens ( f # = 2 ) ; M, mirror.

Fig. 2
Fig. 2

Images collected in the liver chamber: (a) 10 μ M DNR experiment imaged at 4 min and (b) 40 min; 40 μ M experiment at (c) 4 min and (d) 40 min. Contrast was adjusted linearly to improve visibility, but the images maintain relative intensity for comparison purposes.

Fig. 3
Fig. 3

Measured fluorescent intensity (in arbitrary units) of DNR accumulation over time, using different concentrations.

Fig. 4
Fig. 4

Summary graph comparing the rate of DNR uptake into cells located in the liver chamber and uterus (tumor chamber). Over 40 min, all graphs appeared linear, and therefore a linear fit can be used to compare these initial rates of uptake. The uncertainty bars indicate the standard deviation, based on four experiments for 10 μ M and two experiments each for 20 and 40 μ M .

Tables (1)

Tables Icon

Table 1 Rates of Fluorescent Intensity Increase of Cells in the Liver Chamber and Cells in the Uterine Tumor Chamber a

Metrics