Abstract

The optoacoustic technique is noninvasive, has high spatial resolution, and potentially can be used to measure the total hemoglobin concentration ([THb]) continuously and accurately. We performed in vitro measurements in blood and in vivo tests in healthy volunteers. Our clinical protocol included rapid infusion of intravenous saline to simulate rapid change in the [THb] during fluid therapy or surgery. Optoacoustic measurements were made from the wrist area overlying the radial artery for more than 1h. The amplitude of the optoacoustic signal generated in the radial artery closely followed the [THb] measured directly in concurrently collected blood samples.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Prough, Y. E. Petrov, M. H. Klasing, M. Motamedi, and R. O. Esenaliev, Anesthesiology 95, A555 (2001).
  2. R. O. Esenaliev, Y. Y. Petrov, O. Hartrumpf, D. J. Deyo, and D. S. Prough, Appl. Opt. 43, 3401 (2004).
    [CrossRef]
  3. S. Zhang, B. R. Soller, S. Kaur, K. Perras, and T. J. Vander Salm, Appl. Spectrosc. 54, 294 (2000).
    [CrossRef]
  4. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, Opt. Lett. 29, 1766 (2004).
    [CrossRef]
  5. A. J. Welch and M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  6. S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, Opt. Lett. 28, 1212 (2003).

2004

2003

2001

D. S. Prough, Y. E. Petrov, M. H. Klasing, M. Motamedi, and R. O. Esenaliev, Anesthesiology 95, A555 (2001).

2000

Burnett, M. G.

Detre, J. A.

Deyo, D. J.

Durduran, T.

Esenaliev, R. O.

R. O. Esenaliev, Y. Y. Petrov, O. Hartrumpf, D. J. Deyo, and D. S. Prough, Appl. Opt. 43, 3401 (2004).
[CrossRef]

D. S. Prough, Y. E. Petrov, M. H. Klasing, M. Motamedi, and R. O. Esenaliev, Anesthesiology 95, A555 (2001).

Greenberg, J. H.

Hartrumpf, O.

Jiang, S.

Kaur, S.

Klasing, M. H.

D. S. Prough, Y. E. Petrov, M. H. Klasing, M. Motamedi, and R. O. Esenaliev, Anesthesiology 95, A555 (2001).

Kogel, C.

Motamedi, M.

D. S. Prough, Y. E. Petrov, M. H. Klasing, M. Motamedi, and R. O. Esenaliev, Anesthesiology 95, A555 (2001).

Paulsen, K. D.

Perras, K.

Petrov, Y. E.

D. S. Prough, Y. E. Petrov, M. H. Klasing, M. Motamedi, and R. O. Esenaliev, Anesthesiology 95, A555 (2001).

Petrov, Y. Y.

Pogue, B. W.

Poplack, S. P.

Prough, D. S.

R. O. Esenaliev, Y. Y. Petrov, O. Hartrumpf, D. J. Deyo, and D. S. Prough, Appl. Opt. 43, 3401 (2004).
[CrossRef]

D. S. Prough, Y. E. Petrov, M. H. Klasing, M. Motamedi, and R. O. Esenaliev, Anesthesiology 95, A555 (2001).

Soller, B. R.

Van Gemert, M. J. C.

A. J. Welch and M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).

Vander Salm, T. J.

Wang, J.

Welch, A. J.

A. J. Welch and M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).

Yodh, A. G.

Yu, G.

Zhang, S.

Zhou, C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical optoacoustic signals measured from the radial artery phantom with varied [THb].

Fig. 2
Fig. 2

Amplitude of optoacoustic signal measured from the radial artery phantom versus [THb].

Fig. 3
Fig. 3

Typical optoacoustic signals measured from the wrist area above the radial artery 1, 20, and 160 min after the start of saline infusion (dashed, solid, and dotted curves, respectively). The first and second bipolar signals are induced in the skin and the radial artery, respectively. The upper X-axis, which is calculated by multiplying the lower X-axis (time) by the speed of sound in tissue ( 1.5 mm μ s ) , represents depth from the skin surface.

Fig. 4
Fig. 4

Amplitude of the optoacoustic (OA) signal measured from the radial artery and actual total hemoglobin concentration during dilution study.

Metrics