Abstract

Thermal effects such as lensing and birefringence negatively affect the beam quality and limit the power range of solid-state lasers. Self-adaptive overcompensation of the thermal lens is an answer to this problem. It provides a laser system with good beam quality and large stability range. Because the focal length of the thermally induced lens is different for the radial and the tangential polarization, overcompensation can be used to discriminate these two polarizations. Exploiting this method, we demonstrate the generation of radially polarized beams in a self-adaptively overcompensated high-power Nd:YAG laser with an output power of 155 W and an M2 of less than 10.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. J. Greiner and H. H. Klingenberg, Opt. Lett. 19, 1207 (1994).
    [CrossRef] [PubMed]
  2. R. Weber, Th. Graf, M. Schmid, and H. P. Weber, IEEE J. Quantum Electron. 36, 757 (2000).
    [CrossRef]
  3. E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 38, 1620 (2002).
    [CrossRef]
  4. M. S. Roth, E. Wyss, T. Graf, and H. P. Weber, IEEE J. Quantum Electron. 40, 1700 (2004).
    [CrossRef]
  5. E. Wyss, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 41, 671 (2005).
    [CrossRef]
  6. W. Koechner and D. K. Rice, IEEE J. Quantum Electron. QE-6, 3656 (1970).
  7. J. D. Foster and L. M. Osterink, J. Appl. Phys. 41, 3656 (1970).
    [CrossRef]
  8. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
    [CrossRef]
  9. I. Moshe, S. Jackel, and A. Meir, Opt. Lett. 28, 807 (2003).
    [CrossRef] [PubMed]
  10. E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, Proc. SPIE 5147, 21 (2003).
    [CrossRef]

2005

E. Wyss, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 41, 671 (2005).
[CrossRef]

2004

M. S. Roth, E. Wyss, T. Graf, and H. P. Weber, IEEE J. Quantum Electron. 40, 1700 (2004).
[CrossRef]

2003

I. Moshe, S. Jackel, and A. Meir, Opt. Lett. 28, 807 (2003).
[CrossRef] [PubMed]

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, Proc. SPIE 5147, 21 (2003).
[CrossRef]

2002

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 38, 1620 (2002).
[CrossRef]

2000

R. Weber, Th. Graf, M. Schmid, and H. P. Weber, IEEE J. Quantum Electron. 36, 757 (2000).
[CrossRef]

1994

1970

W. Koechner and D. K. Rice, IEEE J. Quantum Electron. QE-6, 3656 (1970).

J. D. Foster and L. M. Osterink, J. Appl. Phys. 41, 3656 (1970).
[CrossRef]

Foster, J. D.

J. D. Foster and L. M. Osterink, J. Appl. Phys. 41, 3656 (1970).
[CrossRef]

Graf, T.

M. S. Roth, E. Wyss, T. Graf, and H. P. Weber, IEEE J. Quantum Electron. 40, 1700 (2004).
[CrossRef]

Graf, Th.

E. Wyss, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 41, 671 (2005).
[CrossRef]

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, Proc. SPIE 5147, 21 (2003).
[CrossRef]

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 38, 1620 (2002).
[CrossRef]

R. Weber, Th. Graf, M. Schmid, and H. P. Weber, IEEE J. Quantum Electron. 36, 757 (2000).
[CrossRef]

Greiner, U. J.

Jackel, S.

Klingenberg, H. H.

Koechner, W.

W. Koechner and D. K. Rice, IEEE J. Quantum Electron. QE-6, 3656 (1970).

W. Koechner, Solid-State Laser Engineering (Springer, 1999).
[CrossRef]

Meir, A.

Moshe, I.

Osterink, L. M.

J. D. Foster and L. M. Osterink, J. Appl. Phys. 41, 3656 (1970).
[CrossRef]

Rice, D. K.

W. Koechner and D. K. Rice, IEEE J. Quantum Electron. QE-6, 3656 (1970).

Roth, M. S.

M. S. Roth, E. Wyss, T. Graf, and H. P. Weber, IEEE J. Quantum Electron. 40, 1700 (2004).
[CrossRef]

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, Proc. SPIE 5147, 21 (2003).
[CrossRef]

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 38, 1620 (2002).
[CrossRef]

Schmid, M.

R. Weber, Th. Graf, M. Schmid, and H. P. Weber, IEEE J. Quantum Electron. 36, 757 (2000).
[CrossRef]

Weber, H. P.

E. Wyss, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 41, 671 (2005).
[CrossRef]

M. S. Roth, E. Wyss, T. Graf, and H. P. Weber, IEEE J. Quantum Electron. 40, 1700 (2004).
[CrossRef]

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, Proc. SPIE 5147, 21 (2003).
[CrossRef]

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 38, 1620 (2002).
[CrossRef]

R. Weber, Th. Graf, M. Schmid, and H. P. Weber, IEEE J. Quantum Electron. 36, 757 (2000).
[CrossRef]

Weber, R.

R. Weber, Th. Graf, M. Schmid, and H. P. Weber, IEEE J. Quantum Electron. 36, 757 (2000).
[CrossRef]

Wyss, E.

E. Wyss, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 41, 671 (2005).
[CrossRef]

M. S. Roth, E. Wyss, T. Graf, and H. P. Weber, IEEE J. Quantum Electron. 40, 1700 (2004).
[CrossRef]

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, Proc. SPIE 5147, 21 (2003).
[CrossRef]

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 38, 1620 (2002).
[CrossRef]

IEEE J. Quantum Electron.

R. Weber, Th. Graf, M. Schmid, and H. P. Weber, IEEE J. Quantum Electron. 36, 757 (2000).
[CrossRef]

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 38, 1620 (2002).
[CrossRef]

M. S. Roth, E. Wyss, T. Graf, and H. P. Weber, IEEE J. Quantum Electron. 40, 1700 (2004).
[CrossRef]

E. Wyss, Th. Graf, and H. P. Weber, IEEE J. Quantum Electron. 41, 671 (2005).
[CrossRef]

W. Koechner and D. K. Rice, IEEE J. Quantum Electron. QE-6, 3656 (1970).

J. Appl. Phys.

J. D. Foster and L. M. Osterink, J. Appl. Phys. 41, 3656 (1970).
[CrossRef]

Opt. Lett.

Proc. SPIE

E. Wyss, M. S. Roth, Th. Graf, and H. P. Weber, Proc. SPIE 5147, 21 (2003).
[CrossRef]

Other

W. Koechner, Solid-State Laser Engineering (Springer, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Stability space diagram with stability limits for both radial and tangential polarization: The overcompensated laser traverses the diagram as indicated by the bold arrow, passing three different stages marked I–III.

Fig. 2
Fig. 2

Setup. HR, highly reflective; OC, output coupler.

Fig. 3
Fig. 3

Output power versus pump power.

Fig. 4
Fig. 4

Near-field intensity distribution of the laser beam at an output power of 100 W: (a) without polarizer, (b) polarizer in vertical, (c) in diagonal, and (d) in horizontal position.

Fig. 5
Fig. 5

Degree of radial polarization (filled diamonds) and beam propagation factor M 2 (open circles) versus the output power of the laser. The vertical, dashed line marks the stability limit of the ϕ polarization.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f r , ϕ = κ π r L R 2 P η heat ( 1 2 d n d T + α C r , ϕ n 0 3 ) 1 ,

Metrics