Abstract

Two types of operation for metal-clad waveguide sensors, peak-type and dip-type operation, are described. The newly discovered peak-type operation [Sens. Actuators B 94, 304 (2003) ] can be achieved by use of a few-nanometers-thick cladding of a metal with a large imaginary permittivity, whereas conventional dip-type operation is obtained with a metal cladding with small imaginary permittivity some tens of nanometers thick. Both types of operation are described, and the main differences are illustrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Salamon, M. F. Brown, and G. Tollin, Trends Biochem. Sci. 24, 213 (1999).
    [CrossRef] [PubMed]
  2. Z. Salamon and G. Tollin, Biophys. J. 80, 1557 (2001).
    [CrossRef] [PubMed]
  3. T. S. Hug, J. E. Prenosil, P. Maier, and M. Morbidelli, Biotechnol. Prog. 18, 1408 (2002).
    [CrossRef] [PubMed]
  4. J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
    [CrossRef]
  5. R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, Opt. Lett. 28, 1233 (2003).
    [CrossRef]
  6. R. Horváth, L. R. Lindvold, and N. B. Larsen, Appl. Phys. B 74, 383 (2002).
    [CrossRef]
  7. M. Zourob, S. Mohr, P. R. Fielden, and N. J. Goddard, Sens. Actuators B 94, 304 (2003).
    [CrossRef]
  8. Z. Salamon, H. A. Macleod, and G. Tollin, Biophys. J. 73, 2791 (1997).
    [CrossRef] [PubMed]
  9. N. Skivesen, R. Horvath, and H. C. Pedersen, Sens. Actuators B 106, 668 (2005).
    [CrossRef]
  10. M. Printz and J. R. Sambles, J. Mod. Opt. 40, 2095 (1993).
    [CrossRef]
  11. K. A. Horne, M. Printz, W. L. Barnes, and J. R. Sambles, Opt. Commun. 110, 80 (1994).
    [CrossRef]
  12. R. Bussjager and H. A. Macleod, J. Mod. Opt. 42, 1355 (1995).
    [CrossRef]
  13. E. Popov, B. Bozkov, and M. Nevière, J. Mod. Opt. 43, 1101 (1996).
    [CrossRef]
  14. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, J. Lightwave Technol. 17, 929 (1999).
    [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), p. 65.
  16. J. E. Geake, Opt. Acta 17, 363 (1970).
    [CrossRef]
  17. K. Tiefenthaler and W. Lukosz, J. Opt. Soc. Am. B 6, 209 (1989).
    [CrossRef]
  18. R. C. Weast ed., Handbook of Chemistry and Physics (CRC, 1983).
  19. A. Otto and W. Sohler, Opt. Commun. 3, 254 (1971).
    [CrossRef]
  20. P. K. Tien, Rev. Mod. Phys. 49, 361 (1977).
    [CrossRef]

2005 (1)

N. Skivesen, R. Horvath, and H. C. Pedersen, Sens. Actuators B 106, 668 (2005).
[CrossRef]

2003 (2)

M. Zourob, S. Mohr, P. R. Fielden, and N. J. Goddard, Sens. Actuators B 94, 304 (2003).
[CrossRef]

R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, Opt. Lett. 28, 1233 (2003).
[CrossRef]

2002 (2)

R. Horváth, L. R. Lindvold, and N. B. Larsen, Appl. Phys. B 74, 383 (2002).
[CrossRef]

T. S. Hug, J. E. Prenosil, P. Maier, and M. Morbidelli, Biotechnol. Prog. 18, 1408 (2002).
[CrossRef] [PubMed]

2001 (1)

Z. Salamon and G. Tollin, Biophys. J. 80, 1557 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
[CrossRef]

1999 (2)

Z. Salamon, M. F. Brown, and G. Tollin, Trends Biochem. Sci. 24, 213 (1999).
[CrossRef] [PubMed]

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, J. Lightwave Technol. 17, 929 (1999).
[CrossRef]

1997 (1)

Z. Salamon, H. A. Macleod, and G. Tollin, Biophys. J. 73, 2791 (1997).
[CrossRef] [PubMed]

1996 (1)

E. Popov, B. Bozkov, and M. Nevière, J. Mod. Opt. 43, 1101 (1996).
[CrossRef]

1995 (1)

R. Bussjager and H. A. Macleod, J. Mod. Opt. 42, 1355 (1995).
[CrossRef]

1994 (1)

K. A. Horne, M. Printz, W. L. Barnes, and J. R. Sambles, Opt. Commun. 110, 80 (1994).
[CrossRef]

1993 (1)

M. Printz and J. R. Sambles, J. Mod. Opt. 40, 2095 (1993).
[CrossRef]

1989 (1)

1977 (1)

P. K. Tien, Rev. Mod. Phys. 49, 361 (1977).
[CrossRef]

1971 (1)

A. Otto and W. Sohler, Opt. Commun. 3, 254 (1971).
[CrossRef]

1970 (1)

J. E. Geake, Opt. Acta 17, 363 (1970).
[CrossRef]

Anemogiannis, E.

Barnes, W. L.

K. A. Horne, M. Printz, W. L. Barnes, and J. R. Sambles, Opt. Commun. 110, 80 (1994).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), p. 65.

Bozkov, B.

E. Popov, B. Bozkov, and M. Nevière, J. Mod. Opt. 43, 1101 (1996).
[CrossRef]

Brown, M. F.

Z. Salamon, M. F. Brown, and G. Tollin, Trends Biochem. Sci. 24, 213 (1999).
[CrossRef] [PubMed]

Bruinink, A.

J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
[CrossRef]

Bussjager, R.

R. Bussjager and H. A. Macleod, J. Mod. Opt. 42, 1355 (1995).
[CrossRef]

Fielden, P. R.

M. Zourob, S. Mohr, P. R. Fielden, and N. J. Goddard, Sens. Actuators B 94, 304 (2003).
[CrossRef]

Gaylord, T. K.

Geake, J. E.

J. E. Geake, Opt. Acta 17, 363 (1970).
[CrossRef]

Glytsis, E. N.

Goddard, N. J.

M. Zourob, S. Mohr, P. R. Fielden, and N. J. Goddard, Sens. Actuators B 94, 304 (2003).
[CrossRef]

Graf, R.

J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
[CrossRef]

Horne, K. A.

K. A. Horne, M. Printz, W. L. Barnes, and J. R. Sambles, Opt. Commun. 110, 80 (1994).
[CrossRef]

Horvath, R.

N. Skivesen, R. Horvath, and H. C. Pedersen, Sens. Actuators B 106, 668 (2005).
[CrossRef]

Horváth, R.

Hug, T. S.

T. S. Hug, J. E. Prenosil, P. Maier, and M. Morbidelli, Biotechnol. Prog. 18, 1408 (2002).
[CrossRef] [PubMed]

Kenausis, G. L.

J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
[CrossRef]

Larsen, N. B.

Lindvold, L. R.

R. Horváth, L. R. Lindvold, and N. B. Larsen, Appl. Phys. B 74, 383 (2002).
[CrossRef]

Lukosz, W.

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, Biophys. J. 73, 2791 (1997).
[CrossRef] [PubMed]

R. Bussjager and H. A. Macleod, J. Mod. Opt. 42, 1355 (1995).
[CrossRef]

Maier, P.

T. S. Hug, J. E. Prenosil, P. Maier, and M. Morbidelli, Biotechnol. Prog. 18, 1408 (2002).
[CrossRef] [PubMed]

Mayer, J.

J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
[CrossRef]

Mohr, S.

M. Zourob, S. Mohr, P. R. Fielden, and N. J. Goddard, Sens. Actuators B 94, 304 (2003).
[CrossRef]

Morbidelli, M.

T. S. Hug, J. E. Prenosil, P. Maier, and M. Morbidelli, Biotechnol. Prog. 18, 1408 (2002).
[CrossRef] [PubMed]

Nevière, M.

E. Popov, B. Bozkov, and M. Nevière, J. Mod. Opt. 43, 1101 (1996).
[CrossRef]

Otto, A.

A. Otto and W. Sohler, Opt. Commun. 3, 254 (1971).
[CrossRef]

Pedersen, H. C.

N. Skivesen, R. Horvath, and H. C. Pedersen, Sens. Actuators B 106, 668 (2005).
[CrossRef]

R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, Opt. Lett. 28, 1233 (2003).
[CrossRef]

Popov, E.

E. Popov, B. Bozkov, and M. Nevière, J. Mod. Opt. 43, 1101 (1996).
[CrossRef]

Prenosil, J. E.

T. S. Hug, J. E. Prenosil, P. Maier, and M. Morbidelli, Biotechnol. Prog. 18, 1408 (2002).
[CrossRef] [PubMed]

Printz, M.

K. A. Horne, M. Printz, W. L. Barnes, and J. R. Sambles, Opt. Commun. 110, 80 (1994).
[CrossRef]

M. Printz and J. R. Sambles, J. Mod. Opt. 40, 2095 (1993).
[CrossRef]

Salamon, Z.

Z. Salamon and G. Tollin, Biophys. J. 80, 1557 (2001).
[CrossRef] [PubMed]

Z. Salamon, M. F. Brown, and G. Tollin, Trends Biochem. Sci. 24, 213 (1999).
[CrossRef] [PubMed]

Z. Salamon, H. A. Macleod, and G. Tollin, Biophys. J. 73, 2791 (1997).
[CrossRef] [PubMed]

Sambles, J. R.

K. A. Horne, M. Printz, W. L. Barnes, and J. R. Sambles, Opt. Commun. 110, 80 (1994).
[CrossRef]

M. Printz and J. R. Sambles, J. Mod. Opt. 40, 2095 (1993).
[CrossRef]

Selmeczi, D.

Skivesen, N.

N. Skivesen, R. Horvath, and H. C. Pedersen, Sens. Actuators B 106, 668 (2005).
[CrossRef]

R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, Opt. Lett. 28, 1233 (2003).
[CrossRef]

Sohler, W.

A. Otto and W. Sohler, Opt. Commun. 3, 254 (1971).
[CrossRef]

Spencer, N. D.

J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
[CrossRef]

Textor, M.

J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
[CrossRef]

Tiefenthaler, K.

Tien, P. K.

P. K. Tien, Rev. Mod. Phys. 49, 361 (1977).
[CrossRef]

Tollin, G.

Z. Salamon and G. Tollin, Biophys. J. 80, 1557 (2001).
[CrossRef] [PubMed]

Z. Salamon, M. F. Brown, and G. Tollin, Trends Biochem. Sci. 24, 213 (1999).
[CrossRef] [PubMed]

Z. Salamon, H. A. Macleod, and G. Tollin, Biophys. J. 73, 2791 (1997).
[CrossRef] [PubMed]

Voros, J.

J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
[CrossRef]

Wintermantel, E.

J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), p. 65.

Zourob, M.

M. Zourob, S. Mohr, P. R. Fielden, and N. J. Goddard, Sens. Actuators B 94, 304 (2003).
[CrossRef]

Appl. Phys. B (1)

R. Horváth, L. R. Lindvold, and N. B. Larsen, Appl. Phys. B 74, 383 (2002).
[CrossRef]

Biophys. J. (2)

Z. Salamon, H. A. Macleod, and G. Tollin, Biophys. J. 73, 2791 (1997).
[CrossRef] [PubMed]

Z. Salamon and G. Tollin, Biophys. J. 80, 1557 (2001).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

J. Voros, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, Biosens. Bioelectron. 15, 423 (2000).
[CrossRef]

Biotechnol. Prog. (1)

T. S. Hug, J. E. Prenosil, P. Maier, and M. Morbidelli, Biotechnol. Prog. 18, 1408 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Mod. Opt. (3)

M. Printz and J. R. Sambles, J. Mod. Opt. 40, 2095 (1993).
[CrossRef]

R. Bussjager and H. A. Macleod, J. Mod. Opt. 42, 1355 (1995).
[CrossRef]

E. Popov, B. Bozkov, and M. Nevière, J. Mod. Opt. 43, 1101 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Acta (1)

J. E. Geake, Opt. Acta 17, 363 (1970).
[CrossRef]

Opt. Commun. (2)

A. Otto and W. Sohler, Opt. Commun. 3, 254 (1971).
[CrossRef]

K. A. Horne, M. Printz, W. L. Barnes, and J. R. Sambles, Opt. Commun. 110, 80 (1994).
[CrossRef]

Opt. Lett. (1)

Rev. Mod. Phys. (1)

P. K. Tien, Rev. Mod. Phys. 49, 361 (1977).
[CrossRef]

Sens. Actuators B (2)

N. Skivesen, R. Horvath, and H. C. Pedersen, Sens. Actuators B 106, 668 (2005).
[CrossRef]

M. Zourob, S. Mohr, P. R. Fielden, and N. J. Goddard, Sens. Actuators B 94, 304 (2003).
[CrossRef]

Trends Biochem. Sci. (1)

Z. Salamon, M. F. Brown, and G. Tollin, Trends Biochem. Sci. 24, 213 (1999).
[CrossRef] [PubMed]

Other (2)

R. C. Weast ed., Handbook of Chemistry and Physics (CRC, 1983).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), p. 65.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of the MCWG sensor in reflection mode.

Fig. 2
Fig. 2

Calculated reflectances from a waveguide with and without a metal layer. The light is TE polarized, with wavelength λ = 632.8 nm . The waveguide parameters are substrate refractive index (glass) n S = 1.51 , metal refractive index (titanium) n M = 2.11 + i 2.88 , film refractive index (silica) n F = 1.47 , and cover refractive index (water) n C = 1.33 . The metal and film layer thicknesses are d M = 5 nm and d F = 240 nm , respectively.

Fig. 3
Fig. 3

Calculated reflectance profiles for a titanium-clad waveguide when the cover’s refractive index is changed and a thin adlayer with refractive index 1.5 and thickness 5 nm is added. The remaining parameters are the same as used in Fig. 2.

Fig. 4
Fig. 4

Calculated optimum metal thicknesses (giving zero dip reflectance) for the MCWG in Fig. 2 but for different metals. The respective ϵ M values are taken from Ref. [18]. The dashed curve represents the approximate relation d M = C λ ( ϵ M ) 2 3 , where C is a constant.

Fig. 5
Fig. 5

Calculated reflectance profiles for the MCWG in Fig. 2 for six metals, i.e., silver, gold, copper, platinum, titanium, and chromium, with optimized metal thicknesses according to Fig. 4.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R S M F C = r S M + r M F C exp ( i 2 k z , M d M ) 1 + r S M r M F C exp ( i 2 k z , M d M ) 2 ,
r M F C = r M F + r F C exp ( i 2 k z , F d F ) 1 + r M F r F C exp ( i 2 k z , F d F ) ,
r I J = n J 2 ρ k z , I n I 2 ρ k z , J n J 2 ρ k z , I + n I 2 ρ k z , J ,
k z , I 2 = k 2 ( n I 2 N 2 ) , k = 2 π λ ,
2 π m = 2 k z , F d F + Φ F , C + Φ F , M , S ,
Φ F , C = 2 arctan [ i ( n F n C ) 2 ρ k z , C k z , F ] ,
Φ F , M , S = 2 arctan { i ( 1 r F , M ) ( 1 + r F , M ) [ 1 r M , S exp ( i 2 k z , M d M ) ] [ 1 + r M , S exp ( i 2 k z , M d M ) ] } ,

Metrics