Abstract

We propose and numerically analyze a novel mode converter based on two-dimensional photonic crystal waveguides with square arrays of cylindrical dielectric rods in air. The mode converter uses small perturbation defects to decouple various modes in the multimode waveguide, thereby permitting propagation of only one mode at any given frequency, which permits one-to-one mode conversion without exciting unwanted modes. The mode converter can efficiently convert a TM0 mode supported in a single-mode photonic crystal waveguide into a TM2 mode supported in the multimode waveguide that is laterally coupled to the single-mode waveguide section for a wide wavelength range. Influences of different sizes and positions of perturbation rods on the band structure of the multimode waveguide are studied.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Milton and W. K. Burns, IEEE J. Quantum Electron. 13, 828 (1977).
    [CrossRef]
  2. M. J. Buckley, D. A. Stein, and R. J. Vernon, IEEE Trans. Microwave Theory Tech. 39, 1301 (1991).
    [CrossRef]
  3. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
    [CrossRef]
  4. T. Brenner and H. Melchior, IEEE Photonics Technol. Lett. 5, 1053 (1993).
    [CrossRef]
  5. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef] [PubMed]
  6. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  7. T. D. Happ, M. Kamp, and A. Forchel, Opt. Lett. 26, 1102 (2001).
    [CrossRef]
  8. C. M. de Sterke, L. C. Botten, A. A. Asatryan, T. P. White, and R. C. McPhedran, Opt. Lett. 29, 1384 (2004).
    [CrossRef]
  9. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
    [CrossRef] [PubMed]
  10. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

2004

2003

2001

1993

T. Brenner and H. Melchior, IEEE Photonics Technol. Lett. 5, 1053 (1993).
[CrossRef]

1991

M. J. Buckley, D. A. Stein, and R. J. Vernon, IEEE Trans. Microwave Theory Tech. 39, 1301 (1991).
[CrossRef]

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

1977

A. F. Milton and W. K. Burns, IEEE J. Quantum Electron. 13, 828 (1977).
[CrossRef]

Almeida, V. R.

Asatryan, A. A.

Botten, L. C.

Brenner, T.

T. Brenner and H. Melchior, IEEE Photonics Technol. Lett. 5, 1053 (1993).
[CrossRef]

Buckley, M. J.

M. J. Buckley, D. A. Stein, and R. J. Vernon, IEEE Trans. Microwave Theory Tech. 39, 1301 (1991).
[CrossRef]

Burns, W. K.

A. F. Milton and W. K. Burns, IEEE J. Quantum Electron. 13, 828 (1977).
[CrossRef]

de Sterke, C. M.

Forchel, A.

Happ, T. D.

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
[CrossRef] [PubMed]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Johnson, S. G.

Kamp, M.

Kazarinov, R. F.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Lipson, M.

McPhedran, R. C.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Melchior, H.

T. Brenner and H. Melchior, IEEE Photonics Technol. Lett. 5, 1053 (1993).
[CrossRef]

Milton, A. F.

A. F. Milton and W. K. Burns, IEEE J. Quantum Electron. 13, 828 (1977).
[CrossRef]

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Panepucci, R. R.

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Stein, D. A.

M. J. Buckley, D. A. Stein, and R. J. Vernon, IEEE Trans. Microwave Theory Tech. 39, 1301 (1991).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Vernon, R. J.

M. J. Buckley, D. A. Stein, and R. J. Vernon, IEEE Trans. Microwave Theory Tech. 39, 1301 (1991).
[CrossRef]

White, T. P.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

IEEE J. Quantum Electron.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

A. F. Milton and W. K. Burns, IEEE J. Quantum Electron. 13, 828 (1977).
[CrossRef]

IEEE Photonics Technol. Lett.

T. Brenner and H. Melchior, IEEE Photonics Technol. Lett. 5, 1053 (1993).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. J. Buckley, D. A. Stein, and R. J. Vernon, IEEE Trans. Microwave Theory Tech. 39, 1301 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Waveguide w1. Dashed rectangle, the supercell used in PWM calculation. (b) Dispersion curve for the TM mode. Shaded areas denote the continuous bands. (c) Field distribution of the electric field E y of the guided mode.

Fig. 2
Fig. 2

(a) PC coupler with one line of rods in the center. (b) Dispersion curves of the two defect modes (the lower one is the odd mode and the upper one is the even mode).

Fig. 3
Fig. 3

(a) Mode converter structure, (b) dispersion curves, (c) electric field distributions E y of the guided modes.

Fig. 4
Fig. 4

Power splitting ratio as a function of wavelength.

Fig. 5
Fig. 5

(a) Bandwidths of modes and (b) gaps between modes for several perturbation offsets.

Fig. 6
Fig. 6

(a) Bandwidths of modes and (b) gaps between modes for several ratios of the radii of the regular rods to those of the perturbation rods.

Metrics