Abstract

We report a new method for making low-loss interfaces between conventional single-mode fibers and photonic crystal fibers (PCFs). Adapted from the fabrication of PCF preforms from stacked tubes and rods, this method avoids the need for splicing and is versatile enough to interface to virtually any type of index-guiding silica PCF. We illustrate the method by forming interfaces to two problematic types of PCF, highly nonlinear and multicore. In particular, we believe this to be the first method capable of individually coupling light into and out of all the cores of a fiber with multiple closely spaced cores, without input or output cross talk.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
    [CrossRef]
  3. P. J. Bennett, T. M. Monro, and D. J. Richardson, Opt. Lett. 24, 1203 (1999).
    [CrossRef]
  4. G. E. Town and J. T. Lizier, Opt. Lett. 26, 1042 (2001).
    [CrossRef]
  5. T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, Proc. SPIE 4943, 142 (2002).
    [CrossRef]
  6. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photon. Technol. Lett. 13, 52 (2001).
    [CrossRef]
  7. A. D. Yablon and R. T. Bise, IEEE Photon. Technol. Lett. 17, 118 (2005).
    [CrossRef]
  8. K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron. Lett. 22, 105 (1986).
    [CrossRef]
  9. J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
    [CrossRef]
  10. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, Opt. Lett. 28, 387 (2003).
    [CrossRef] [PubMed]

2005 (1)

A. D. Yablon and R. T. Bise, IEEE Photon. Technol. Lett. 17, 118 (2005).
[CrossRef]

2003 (1)

2002 (1)

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, Proc. SPIE 4943, 142 (2002).
[CrossRef]

2001 (2)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photon. Technol. Lett. 13, 52 (2001).
[CrossRef]

G. E. Town and J. T. Lizier, Opt. Lett. 26, 1042 (2001).
[CrossRef]

2000 (2)

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
[CrossRef]

1999 (1)

1986 (2)

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

Barton, J. S.

Bennett, P. J.

Bennion, I.

Birks, T. A.

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, Proc. SPIE 4943, 142 (2002).
[CrossRef]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

Bise, R. T.

A. D. Yablon and R. T. Bise, IEEE Photon. Technol. Lett. 17, 118 (2005).
[CrossRef]

Chandalia, J. K.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photon. Technol. Lett. 13, 52 (2001).
[CrossRef]

Eggleton, B. J.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photon. Technol. Lett. 13, 52 (2001).
[CrossRef]

Flockhart, G. M. H.

Greenaway, A. H.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

Henry, W. M.

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

Hussey, C. D.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Jedrzejewski, K. P.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Jones, J. D. C.

Kakarantzas, G.

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, Proc. SPIE 4943, 142 (2002).
[CrossRef]

Knight, J. C.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

Kosinski, S. G.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photon. Technol. Lett. 13, 52 (2001).
[CrossRef]

Liu, X.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photon. Technol. Lett. 13, 52 (2001).
[CrossRef]

Lizier, J. T.

Love, J. D.

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

MacPherson, W. N.

Mangan, B. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

Martinez, F.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Minelly, J. D.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Monro, T. M.

Murphy, D. F.

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, Proc. SPIE 4943, 142 (2002).
[CrossRef]

Payne, F. P.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Ranka, J. K.

Richardson, D. J.

Russell, P. St. J.

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, Proc. SPIE 4943, 142 (2002).
[CrossRef]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

Stentz, A. J.

Town, G. E.

Windeler, R. S.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photon. Technol. Lett. 13, 52 (2001).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
[CrossRef]

Xu, C.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photon. Technol. Lett. 13, 52 (2001).
[CrossRef]

Yablon, A. D.

A. D. Yablon and R. T. Bise, IEEE Photon. Technol. Lett. 17, 118 (2005).
[CrossRef]

Zhang, L.

Electron. Lett. (3)

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photon. Technol. Lett. 13, 52 (2001).
[CrossRef]

A. D. Yablon and R. T. Bise, IEEE Photon. Technol. Lett. 17, 118 (2005).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (1)

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, Proc. SPIE 4943, 142 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagrams of a spliceless ferrule interface between a SMF and a PCF. (a) Construction of the interface by inserting a SMF into a void in the ferrule and then drawing it to a PCF. (b) Longitudinal section, showing how the mode spreads out from the tapered SMF core to become guided by the surrounding PCF core. The gap around the SMF in the void is collapsed by evacuation while drawing, forming a PCF core from the entire SMF and some ferrule material.

Fig. 2
Fig. 2

(a) Scanning electron micrograph (SEM) of a 3 mm diameter ferrule. (b) Optical micrograph (OM) of the central void in such a ferrule containing a 125 μ m diameter SMF. (c) SEM of the endlessly single-mode solid-core PCF drawn from the ferrule.

Fig. 3
Fig. 3

(a) OM of a high air-filling-fraction ferrule. Each hole is 380 μ m across flats. (b) OM of one of the holes containing a SMF. (c) SEM of a highly nonlinear PCF with a 2.8 μ m core drawn from the ferrule. (d) Supercontinuum spectra at the output of the PCF when femtosecond pulses were coupled into the SMF. The average output powers were 0.03, 5, and 21 mW (dashed, dotted, and solid curves, respectively) as estimated by integrating the curves.

Fig. 4
Fig. 4

(a) SEM of the voids (separated by 1.5 mm ) in a two-core ferrule. (b) Photograph of the undrawn end of the ferrule containing two SMFs. (c) SEM of the 110 μ m diameter two-core PCF drawn from the ferrule. (d)–(f) Near-field images at the output of the PCF for light coupled into both SMFs then into each SMF alone in turn.

Metrics