Abstract

We propose a new way to design gratings with desired diffraction properties by using subwavelength feature sizes perpendicular to the ordinary superwavelength grating period. This is different from well-known one-dimensional binary-blazed gratings that use a structuring along the grating period and thus opens new flexibility in generating arbitrary effective-index distributions in the direction of the grating period. Since the subwavelength features form contiguous areas, they are called area-coded effective medium structures (ACES). Compared with well-known binary subwavelength structures in two-dimensional arrangements consisting of pillars, ACES are more stable and have comparable efficiency properties. As an example we show how to design in principle a four-level area-coded effective medium grating, compare the efficiency of ACES with binary-blazed and échelette gratings, and optimize the subwavelength period of ACES.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie, 1997).
  2. S. Rytov, Sov. Phys. JETP 2, 466 (1955).
  3. W. Stork, N. Streibl, H. Haidner, and B. Kipfer, Opt. Lett. 16, 1921 (1991).
    [CrossRef] [PubMed]
  4. M. W. Farn, Appl. Opt. 31, 4453 (1992).
    [CrossRef] [PubMed]
  5. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, Opt. Lett. 23, 552 (1998).
    [CrossRef]
  6. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, J. Opt. Soc. Am. A 16, 1143 (1999).
    [CrossRef]
  7. J. Mait, D. W. Prather, and M. S. Mirotznik, J. Opt. Soc. Am. A 16, 1157 (1999).
    [CrossRef]
  8. Mane-Si Laure Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, 119 (2002).
    [CrossRef]
  9. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).
    [CrossRef]
  10. P. Lalanne, J. Opt. Soc. Am. A 16, 2517 (1999).
    [CrossRef]

2002 (1)

Mane-Si Laure Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, 119 (2002).
[CrossRef]

1999 (3)

1998 (1)

1997 (1)

1992 (1)

1991 (1)

1955 (1)

S. Rytov, Sov. Phys. JETP 2, 466 (1955).

Astilean, S.

Cambril, E.

Chavel, P.

Chen, Y.

Mane-Si Laure Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, 119 (2002).
[CrossRef]

Farn, M. W.

Haidner, H.

Kipfer, B.

Lalanne, P.

Launois, H.

Lee, Mane-Si Laure

Mane-Si Laure Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, 119 (2002).
[CrossRef]

Li, L.

Mait, J.

Mirotznik, M. S.

Prather, D. W.

Rodier, J. C.

Mane-Si Laure Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, 119 (2002).
[CrossRef]

Rytov, S.

S. Rytov, Sov. Phys. JETP 2, 466 (1955).

Stork, W.

Streibl, N.

Turunen, J.

J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie, 1997).

Wyrowski, F.

J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie, 1997).

Appl. Opt. (1)

J. Opt. A Pure Appl. Opt. (1)

Mane-Si Laure Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, J. Opt. A Pure Appl. Opt. 4, 119 (2002).
[CrossRef]

J. Opt. Soc. Am. A (4)

Opt. Lett. (2)

Sov. Phys. JETP (1)

S. Rytov, Sov. Phys. JETP 2, 466 (1955).

Other (1)

J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

BLACES with grating period g several wavelengths long and sampling period w < λ 2 .

Fig. 2
Fig. 2

Top view of a sample configuration for multilevel ACES with four levels.

Fig. 3
Fig. 3

Number of ACE subwavelength periods w per wavelength: g = 5 λ , n ACE = 2.3 , n Substrate = 1.46 .

Fig. 4
Fig. 4

Unpolarized efficiency of BLACES according to Fig. 1 over the grating period in normal incidence compared with 1D BB and CB gratings: λ = 633 and 817 nm deep Ti O 2 structures.

Fig. 5
Fig. 5

Efficiency of fixed period BLACES compared with 2D BB structures over the incidence angle in air. Unpolarized light of λ = 633 nm , with g = 1900 nm , and the height of the Ti O 2 structures is 817 nm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

h ACE = λ 0 max ( n eff ) min ( n eff ) ,
n eff TE = [ f n 1 2 + ( 1 f ) n 2 2 ] 1 2 , 1 n eff TM = [ f n 1 2 + ( 1 f ) n 2 2 ] 1 2

Metrics