Abstract

We propose a new way to design gratings with desired diffraction properties by using subwavelength feature sizes perpendicular to the ordinary superwavelength grating period. This is different from well-known one-dimensional binary-blazed gratings that use a structuring along the grating period and thus opens new flexibility in generating arbitrary effective-index distributions in the direction of the grating period. Since the subwavelength features form contiguous areas, they are called area-coded effective medium structures (ACES). Compared with well-known binary subwavelength structures in two-dimensional arrangements consisting of pillars, ACES are more stable and have comparable efficiency properties. As an example we show how to design in principle a four-level area-coded effective medium grating, compare the efficiency of ACES with binary-blazed and ├ęchelette gratings, and optimize the subwavelength period of ACES.

© 2005 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription