Abstract

Submillimeter-scale dispersion micromanagement (DMM) is used to generate coherent and stable femtosecond visible pulses in holey fibers as short as 10mm. The longitudinal variation of the phase-matching conditions for Čerenkov radiation and four-wave mixing explains the results well. We have converted up to 20% of the total input energy to a low-noise solitary wave with a bandwidth up to 50nm in the range 385625nm by using holey fibers with various DMM designs.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
    [CrossRef] [PubMed]
  3. A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef]
  4. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, Opt. Express 12, 124 (2004).
    [CrossRef] [PubMed]
  5. M. A. Foster and A. L. Gaeta, Opt. Express 12, 3137 (2004).
    [CrossRef] [PubMed]
  6. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
    [CrossRef] [PubMed]
  7. E. C. Magi, P. Steinvurzel, and B. J. Eggleton, Opt. Express 12, 776 (2004).
    [CrossRef]
  8. F. Lu, L. E. Foulkrod, and W. H. Knox, Post-deadline paper PD1, NLO Conference 2004.
  9. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, Opt. Lett. 27, 445 (2002).
    [CrossRef]
  10. F. Lu and W. H. Knox, Opt. Express 12, 347 (2004).
    [CrossRef] [PubMed]
  11. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, Opt. Express 10, 1215 (2002).
    [CrossRef] [PubMed]
  12. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef]

2004 (4)

2003 (3)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

2002 (2)

2001 (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

2000 (1)

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
[CrossRef] [PubMed]

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, Opt. Express 10, 1215 (2002).
[CrossRef] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Cristiani, I.

Cundiff, S. T.

Degiorgio, V.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, Opt. Express 10, 1215 (2002).
[CrossRef] [PubMed]

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
[CrossRef] [PubMed]

Eggleton, B. J.

Fortier, T. M.

Foster, M. A.

Foulkrod, L. E.

F. Lu, L. E. Foulkrod, and W. H. Knox, Post-deadline paper PD1, NLO Conference 2004.

Gaeta, A. L.

Gu, X.

Herrmann, J.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Husakou, A. V.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Kimmel, M.

Knight, J. C.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

Knox, W. H.

F. Lu and W. H. Knox, Opt. Express 12, 347 (2004).
[CrossRef] [PubMed]

F. Lu, L. E. Foulkrod, and W. H. Knox, Post-deadline paper PD1, NLO Conference 2004.

Lu, F.

F. Lu and W. H. Knox, Opt. Express 12, 347 (2004).
[CrossRef] [PubMed]

F. Lu, L. E. Foulkrod, and W. H. Knox, Post-deadline paper PD1, NLO Conference 2004.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

Magi, E. C.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

O’Shea, P.

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
[CrossRef] [PubMed]

Ranka, J. K.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
[CrossRef] [PubMed]

Steinvurzel, P.

Stentz, A. J.

Tartara, L.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
[CrossRef] [PubMed]

Tediosi, R.

Trebino, R.

Webber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Windeler, R. S.

Xu, L.

Ye, J.

Zeek, E.

Nature (1)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Nature 424, 511 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

Other (1)

F. Lu, L. E. Foulkrod, and W. H. Knox, Post-deadline paper PD1, NLO Conference 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Measured core diameter profile along the 1.0 - cm fiber length for a DMM HF with end surface images. (b) Group-velocity dispersion (GVD) curves for HF groups with core diameters of 3.3, 2.6, 2.2, 1.8, and 1.45 μ m (right to left). (c) Curves of phase mismatch Δ β between the 940 - nm soliton (redshifted from 880 - nm λ input including self-phase modulation and intrapulse Raman scattering) and CR for these HF groups.

Fig. 2
Fig. 2

Characterization of the continuum with blue-violet ASR generated through a 1.0 - cm DMM HF. (a), (b) Spectra of the continuum with λ input of 880 and 900 nm . Insets, blue-violet region on a linear scale. (c) Mutual spectral interference pattern for the 410 - nm ASR of (a); high visibility, showing coherence of 80 % . (d) The measured sum-frequency-resolved optical gating trace of the ASR, showing a well-isolated blue-violet feature of 77 - fs duration.

Fig. 3
Fig. 3

(a) Theoretical calculation of CR resonant wavelengths for DMM end sections from 2.7 to 2.5 μ m , with resonant wavelengths centered at 528 nm . (b) Measured continuum spectrum for the second DMM HF, showing a strong green feature ( 538 nm ) with 28 - nm bandwidth. (c) Autocorrelation measurement by the lock-in technique, showing a 70 - fs pulse width. (d) rf measurement with a 50 - kHz scan width, showing no observable extra white-noise floor rising, and a > 80 - dB signal-to-noise ratio (SNR). Dashed curve, the original noise floor of the laser. (e) Mutual spectral interference measurement, showing high coherence of > 90 % . (f) Continuum spectrum generated by the third DMM HF, showing a strong red pulse ( 600 nm ) with 45 - nm bandwidth.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ β = β ( ω s ) β ( ω ) + ω ω s v g + γ P s ,

Metrics