Abstract

We demonstrate a highly sensitive real-time optical pulse characterization technique based on differential chronocyclic tomography. The spectral intensity and phase of the pulse under test are reconstructed analytically from two experimental traces measured simultaneously in the spectral domain. The high sensitivity and accuracy are made possible by lock-in detection of the differential spectra in the simplified chronocyclic tomography. An accuracy of 0.04rad of spectral phase recovery is achieved with a 10-Hz refresh rate and 10-μW sensitivity. We also show that the measurement technique is applicable to pulses as short as 100fs.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, T. Yamamoto, and K. R. Tamura, Electron. Lett. 36, 2027 (2000).
    [CrossRef]
  2. S. Hamilton, B. Robinson, T. Murphy, S. Savage, and E. Ippen, J. Lightwave Technol. 20, 2086 (2002).
    [CrossRef]
  3. K. R. Tamura and K. Sato, Opt. Lett. 27, 1268 (2002).
    [CrossRef]
  4. C. Dorrer and I. Kang, IEEE Photonics Technol. Lett. 16, 858 (2004).
    [CrossRef]
  5. J. Debeau, B. Kowalski, and R. Boittin, Opt. Lett. 23, 1784 (1998).
    [CrossRef]
  6. L. P. Barry, S. Del Burgon, B. Thomsen, R. T. Watts, D. A. Reid, and J. Harvey, IEEE Photonics Technol. Lett. 14, 971 (2002).
    [CrossRef]
  7. P.-A. Lacourt, J. M. Dudley, J.-M. Merolla, H. Porte, J. Goedgebuer, and W. T. Rhodes, Opt. Lett. 27, 863 (2002).
    [CrossRef]
  8. C. Dorrer and I. Kang, Opt. Lett. 28, 1481 (2003).
    [CrossRef] [PubMed]
  9. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
  10. I. Kang, C. Dorrer, and F. Quochi, Opt. Lett. 28, 2264 (2003).
    [CrossRef] [PubMed]

2004 (1)

C. Dorrer and I. Kang, IEEE Photonics Technol. Lett. 16, 858 (2004).
[CrossRef]

2003 (2)

2002 (4)

2000 (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, Electron. Lett. 36, 2027 (2000).
[CrossRef]

1998 (1)

Barry, L. P.

L. P. Barry, S. Del Burgon, B. Thomsen, R. T. Watts, D. A. Reid, and J. Harvey, IEEE Photonics Technol. Lett. 14, 971 (2002).
[CrossRef]

Boittin, R.

Debeau, J.

Del Burgon, S.

L. P. Barry, S. Del Burgon, B. Thomsen, R. T. Watts, D. A. Reid, and J. Harvey, IEEE Photonics Technol. Lett. 14, 971 (2002).
[CrossRef]

Dorrer, C.

Dudley, J. M.

Feynman, R. P.

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

Goedgebuer, J.

Hamilton, S.

Harvey, J.

L. P. Barry, S. Del Burgon, B. Thomsen, R. T. Watts, D. A. Reid, and J. Harvey, IEEE Photonics Technol. Lett. 14, 971 (2002).
[CrossRef]

Hibbs, A. R.

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

Ippen, E.

Kang, I.

Kowalski, B.

Lacourt, P.-A.

Merolla, J.-M.

Murphy, T.

Nakazawa, M.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, Electron. Lett. 36, 2027 (2000).
[CrossRef]

Porte, H.

Quochi, F.

Reid, D. A.

L. P. Barry, S. Del Burgon, B. Thomsen, R. T. Watts, D. A. Reid, and J. Harvey, IEEE Photonics Technol. Lett. 14, 971 (2002).
[CrossRef]

Rhodes, W. T.

Robinson, B.

Sato, K.

Savage, S.

Tamura, K. R.

K. R. Tamura and K. Sato, Opt. Lett. 27, 1268 (2002).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, Electron. Lett. 36, 2027 (2000).
[CrossRef]

Thomsen, B.

L. P. Barry, S. Del Burgon, B. Thomsen, R. T. Watts, D. A. Reid, and J. Harvey, IEEE Photonics Technol. Lett. 14, 971 (2002).
[CrossRef]

Watts, R. T.

L. P. Barry, S. Del Burgon, B. Thomsen, R. T. Watts, D. A. Reid, and J. Harvey, IEEE Photonics Technol. Lett. 14, 971 (2002).
[CrossRef]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, Electron. Lett. 36, 2027 (2000).
[CrossRef]

Electron. Lett. (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, Electron. Lett. 36, 2027 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

C. Dorrer and I. Kang, IEEE Photonics Technol. Lett. 16, 858 (2004).
[CrossRef]

L. P. Barry, S. Del Burgon, B. Thomsen, R. T. Watts, D. A. Reid, and J. Harvey, IEEE Photonics Technol. Lett. 14, 971 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (5)

Other (1)

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: optical fibers (continuous line), 10 - GHz links (dashed lines), low-frequency electrical signals (short-dashed lines). Shaded box, timing between the optical pulse and positive (dashed curve) and negative (solid curve) phase modulations. Abbreviations defined in text.

Fig. 2
Fig. 2

Bottom, spectral intensity (dashed curve) of the pulse and spectral phases induced by linear propagation in 12 - m (circles), 22 - m (squares), 42 - m (triangles), and 180 - m (diamonds) SSMF. Top, differences between the measured and calculated phases for these fibers.

Fig. 3
Fig. 3

(a) Spectral intensity (solid curve) of the pulse and spectral phases induced after 22 - m SSMF measured at 10 Hz for 200 μ W (circles), 50 μ W (squares), and 10 μ W (triangles). (b) Spectral intensity (solid curve) of the pulse and spectral phases induced after 42 - m SSMF measured at 66 Hz for 160 μ W (circles), 100 μ W (squares), and 50 μ W (triangles). The symbols at the top part of (a) and (b) are for measurement errors.

Fig. 4
Fig. 4

Left, spectral phase and intensity and right, temporal intensity of the mode-locked laser pulse (dotted curves), the pulse after the all-fiber compressor (dashed curves), and the pulse after the grating compressor (solid curves).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( ω ) = I ave ( ω ) = I ψ ( ω ) + I ψ ( ω ) 2 ,
I ψ ψ ψ = 0 = ω [ I ( ω ) φ ω ] = I ψ ( ω ) I ψ ( ω ) 2 ψ = Δ I ( ω ) 2 ψ .
E ̃ ( ω , z ) z + i 2 L ψ 2 E ̃ ( ω , z ) ω 2 i 2 β ( 2 ) ω 2 E ̃ ( ω , z ) = 0 ,
E ̃ ψ ( ω ) = d ω ( 1 2 π i ψ ) 1 2 exp [ ( ω ω ) 2 2 i ψ + i 4 β ( 2 ) L ( ω 2 + ω 2 ) ] E ̃ 0 ( ω ) ,
I ψ ψ ψ = 0 = ω { I ( ω ) ω [ φ ( ω ) + β ( 2 ) ω 2 L 4 ] } ,

Metrics