Abstract

New methods are proposed for extending the range of fiber-optic one-way quantum key distribution (QKD), inspired by classical optical communication formats. A new time-domain technique based on pulse position modulation (PPM) is combined with differential phase-shift keying to optically implement a six-state protocol. Finally, some recently proposed PPM schemes are critically reviewed and applied to synthesize a new QKD asymmetric optical realization, applicable to local or metropolitan area networks.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Benedetto and P. T. Poggiolini, IEEE Trans. Commun. 40, 707 (1992).
    [CrossRef]
  2. J. Gruska, Quantum Computing (McGraw-Hill, New York, 1999).
  3. P. D. Townsend, J. G. Rarity, and P. R. Tapster, Electron. Lett. 29, 1291 (1993).
    [CrossRef]
  4. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
    [CrossRef]
  5. C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84, 3762 (2004).
    [CrossRef]
  6. D. Bruss, arXiv.org e-Print archive, quant-ph/9805019, October 8, 1998, http://arxiv.org/abs/quant-ph/9805019.
  7. D. Gottesman and H.-K. Lo, arXiv.org e-Print archive, quant-ph/0105121, September 17, 2002, http://arxiv.org/abs/quant-ph/0105121.
  8. S. N. Molotkov, JETP Lett. 78, 659 (2003).
    [CrossRef]
  9. S. N. Molotkov, JETP Lett. 79, 445 (2004).
    [CrossRef]
  10. S. N. Molotkov, JETP Lett. 79, 559 (2004).
    [CrossRef]
  11. T. Debuisschert and W. Boucher, in Quantum Electronics and Laser Science (QELS), Postconference Digest, Vol. 74 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper QThG4.
  12. T. Debuisschert and W. Boucher, in Quantum Electronics and Laser Sciences (QELS), Postconference Digest, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper QThG4.

2004 (3)

C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84, 3762 (2004).
[CrossRef]

S. N. Molotkov, JETP Lett. 79, 445 (2004).
[CrossRef]

S. N. Molotkov, JETP Lett. 79, 559 (2004).
[CrossRef]

2003 (1)

S. N. Molotkov, JETP Lett. 78, 659 (2003).
[CrossRef]

1997 (1)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

1993 (1)

P. D. Townsend, J. G. Rarity, and P. R. Tapster, Electron. Lett. 29, 1291 (1993).
[CrossRef]

1992 (1)

S. Benedetto and P. T. Poggiolini, IEEE Trans. Commun. 40, 707 (1992).
[CrossRef]

Benedetto, S.

S. Benedetto and P. T. Poggiolini, IEEE Trans. Commun. 40, 707 (1992).
[CrossRef]

Boucher, W.

T. Debuisschert and W. Boucher, in Quantum Electronics and Laser Science (QELS), Postconference Digest, Vol. 74 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper QThG4.

T. Debuisschert and W. Boucher, in Quantum Electronics and Laser Sciences (QELS), Postconference Digest, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper QThG4.

Debuisschert, T.

T. Debuisschert and W. Boucher, in Quantum Electronics and Laser Sciences (QELS), Postconference Digest, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper QThG4.

T. Debuisschert and W. Boucher, in Quantum Electronics and Laser Science (QELS), Postconference Digest, Vol. 74 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper QThG4.

Gisin, N.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84, 3762 (2004).
[CrossRef]

Gruska, J.

J. Gruska, Quantum Computing (McGraw-Hill, New York, 1999).

Herzog, T.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Huttner, B.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Molotkov, S. N.

S. N. Molotkov, JETP Lett. 79, 445 (2004).
[CrossRef]

S. N. Molotkov, JETP Lett. 79, 559 (2004).
[CrossRef]

S. N. Molotkov, JETP Lett. 78, 659 (2003).
[CrossRef]

Muller, A.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Poggiolini, P. T.

S. Benedetto and P. T. Poggiolini, IEEE Trans. Commun. 40, 707 (1992).
[CrossRef]

Rarity, J. G.

P. D. Townsend, J. G. Rarity, and P. R. Tapster, Electron. Lett. 29, 1291 (1993).
[CrossRef]

Shields, A. J.

C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84, 3762 (2004).
[CrossRef]

Tapster, P. R.

P. D. Townsend, J. G. Rarity, and P. R. Tapster, Electron. Lett. 29, 1291 (1993).
[CrossRef]

Tittel, W.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Townsend, P. D.

P. D. Townsend, J. G. Rarity, and P. R. Tapster, Electron. Lett. 29, 1291 (1993).
[CrossRef]

Yuan, Z. L.

C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84, 3762 (2004).
[CrossRef]

Zbinden, H.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84, 3762 (2004).
[CrossRef]

Electron. Lett. (1)

P. D. Townsend, J. G. Rarity, and P. R. Tapster, Electron. Lett. 29, 1291 (1993).
[CrossRef]

IEEE Trans. Commun. (1)

S. Benedetto and P. T. Poggiolini, IEEE Trans. Commun. 40, 707 (1992).
[CrossRef]

JETP Lett. (3)

S. N. Molotkov, JETP Lett. 78, 659 (2003).
[CrossRef]

S. N. Molotkov, JETP Lett. 79, 445 (2004).
[CrossRef]

S. N. Molotkov, JETP Lett. 79, 559 (2004).
[CrossRef]

Other (5)

T. Debuisschert and W. Boucher, in Quantum Electronics and Laser Science (QELS), Postconference Digest, Vol. 74 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper QThG4.

T. Debuisschert and W. Boucher, in Quantum Electronics and Laser Sciences (QELS), Postconference Digest, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper QThG4.

D. Bruss, arXiv.org e-Print archive, quant-ph/9805019, October 8, 1998, http://arxiv.org/abs/quant-ph/9805019.

D. Gottesman and H.-K. Lo, arXiv.org e-Print archive, quant-ph/0105121, September 17, 2002, http://arxiv.org/abs/quant-ph/0105121.

J. Gruska, Quantum Computing (McGraw-Hill, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Novel extension of the BB84 protocol from four to six states using DPSK and PPM rather than POLSK: BSs, beam splitters; MZI [ T , θ ] , MZIs with relative delay T and θ relative phase shift; SWs, three-way optical switches. The diode symbols designate single-photon detectors.

Fig. 2
Fig. 2

Abstract description of the BB84-like PPM protocol (similar to Ref. [10] but also used in a modified realization of Fig. 3 immune to the short-pulse attack). The rectangles describe the PPM time-shifted transmitted states. The arrows indicate the corresponding detection gating intervals. The white, gray, horizontal hatches and vertical hatches correspond to states u , u , v , and v , respectively.

Fig. 3
Fig. 3

Optical realization of a PPM BB84-like QKD protocol with countermeasure against short-pulse attacks. In one version (Alice#1) the transmitter comprises a fiber-optic delay line and a four-way optical switch (4:1 SW) driven by switching patterns generating the waveforms. A second version (Alice#2) reduces to a pulsed weak-photon source of minimal complexity, albeit of lesser range for a given security. The receiver (Bob) comprises a gated single-photon detector, determining the arrival of a photon in the various intervals indicated. A fraction of the incoming pulses is diverted to a coherence-monitoring MZI without a phase modulator (as applied in Refs. [11, 12] to a different four-slot protocol).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

w = 2 1 2 { t 0 + exp ( j θ ) t 1 } ,
w = 2 1 2 { t 1 + exp ( j θ ) t 2 } ,
t 2 w = 0 = t 0 w , t 2 w 2 = 2 1 2 = t 2 w 2 ,
u = 2 1 2 { t 0 + exp ( j θ ) t 1 } ,
u = 2 1 2 { t 2 + exp ( j θ ) t 3 } ,
v = 2 1 2 { t 0 + exp ( j ϕ ) t 3 } ,
v = 2 1 2 { t 1 + exp ( j ϕ ) t 2 } .

Metrics