Abstract

Triple-layer omnidirectional reflectors (ODRs) consisting of a semiconductor, a quarter-wavelength transparent dielectric layer, and a metal have high reflectivities for all angles of incidence. Internal ODRs (ambient material’s refractive index n1.0) are demonstrated that incorporate nanoporous SiO2, a low-refractive-index material (n=1.23), as well as dense SiO2 (n=1.46). GaP and Ag serve as the semiconductor and the metal layer, respectively. Reflectivity measurements, including angular dependence, are presented. Calculated angle-integrated TE and TM reflectivities for ODRs employing nanoporous SiO2 are RintTE=99.9% and RintTM=98.9%, respectively, indicating the high potential of the ODRs for low-loss waveguide structures.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription