Abstract

We describe an ultrastable cesium (Cs) atomic clock with a 9.1926-GHz regeneratively mode-locked fiber laser obtained by use of an optically pumped Cs beam tube. By adopting a 1-m-long Cs beam tube with a linewidth of 110Hz, we have successfully obtained frequency stabilities of 4.8×1012 for τ=1s and 6.3×1013 for τ=50s for a 9.1926-GHz microwave output signal. This Cs atomic clock can generate an optical pulse train with the same stability as that of the obtained microwave, which allows us to deliver a frequency standard optical signal throughout the world by means of optical fiber networks.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hata and K. Shimoda, Appl. Phys. 22, 1 (1980).
    [CrossRef]
  2. L. S. Cutler and C. L. Searle, Proc. IEEE 54, 136 (1966).
    [CrossRef]
  3. M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
    [CrossRef]
  4. M. Nakazawa and K. Suzuki, Opt. Lett. 26, 635 (2001).
    [CrossRef]
  5. K. W. Holen, D. J. Jones, S. T. Cundiff, J. Ye, J. B. Schlager, and E. P. Ippen, IEEE LEOS Newsletter 17(6), 6 (2003).
  6. E. Yoshida and M. Nakazawa, IEEE Photonics Technol. Lett. 11, 548 (1999).
    [CrossRef]
  7. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
    [CrossRef] [PubMed]
  8. H. Lyons, Ann. N.Y. Acad. Sci. 55, 831 (1952).
    [CrossRef]
  9. N. F. Ramsey, Phys. Rev. 78, 695 (1950).
    [CrossRef]
  10. S. Ohshima, Y. Nakadan, T. Ikegami, and Y. Koga, IEEE Trans. Instrum. Meas. 40, 1003 (1991).
    [CrossRef]
  11. D. W. Allan, Proc. IEEE 54, 221 (1966).
    [CrossRef]

2003 (1)

K. W. Holen, D. J. Jones, S. T. Cundiff, J. Ye, J. B. Schlager, and E. P. Ippen, IEEE LEOS Newsletter 17(6), 6 (2003).

2001 (1)

2000 (1)

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

1999 (1)

E. Yoshida and M. Nakazawa, IEEE Photonics Technol. Lett. 11, 548 (1999).
[CrossRef]

1994 (1)

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

1991 (1)

S. Ohshima, Y. Nakadan, T. Ikegami, and Y. Koga, IEEE Trans. Instrum. Meas. 40, 1003 (1991).
[CrossRef]

1980 (1)

N. Hata and K. Shimoda, Appl. Phys. 22, 1 (1980).
[CrossRef]

1966 (2)

L. S. Cutler and C. L. Searle, Proc. IEEE 54, 136 (1966).
[CrossRef]

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

1952 (1)

H. Lyons, Ann. N.Y. Acad. Sci. 55, 831 (1952).
[CrossRef]

1950 (1)

N. F. Ramsey, Phys. Rev. 78, 695 (1950).
[CrossRef]

Allan, D. W.

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Apolonski, A.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Cundiff, S. T.

K. W. Holen, D. J. Jones, S. T. Cundiff, J. Ye, J. B. Schlager, and E. P. Ippen, IEEE LEOS Newsletter 17(6), 6 (2003).

Cutler, L. S.

L. S. Cutler and C. L. Searle, Proc. IEEE 54, 136 (1966).
[CrossRef]

Hänsch, T. W.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Hata, N.

N. Hata and K. Shimoda, Appl. Phys. 22, 1 (1980).
[CrossRef]

Holen, K. W.

K. W. Holen, D. J. Jones, S. T. Cundiff, J. Ye, J. B. Schlager, and E. P. Ippen, IEEE LEOS Newsletter 17(6), 6 (2003).

Holzwarth, R.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Ikegami, T.

S. Ohshima, Y. Nakadan, T. Ikegami, and Y. Koga, IEEE Trans. Instrum. Meas. 40, 1003 (1991).
[CrossRef]

Ippen, E. P.

K. W. Holen, D. J. Jones, S. T. Cundiff, J. Ye, J. B. Schlager, and E. P. Ippen, IEEE LEOS Newsletter 17(6), 6 (2003).

Jones, D. J.

K. W. Holen, D. J. Jones, S. T. Cundiff, J. Ye, J. B. Schlager, and E. P. Ippen, IEEE LEOS Newsletter 17(6), 6 (2003).

Kimura, Y.

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

Koga, Y.

S. Ohshima, Y. Nakadan, T. Ikegami, and Y. Koga, IEEE Trans. Instrum. Meas. 40, 1003 (1991).
[CrossRef]

Krausz, F.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Lyons, H.

H. Lyons, Ann. N.Y. Acad. Sci. 55, 831 (1952).
[CrossRef]

Nakadan, Y.

S. Ohshima, Y. Nakadan, T. Ikegami, and Y. Koga, IEEE Trans. Instrum. Meas. 40, 1003 (1991).
[CrossRef]

Nakazawa, M.

M. Nakazawa and K. Suzuki, Opt. Lett. 26, 635 (2001).
[CrossRef]

E. Yoshida and M. Nakazawa, IEEE Photonics Technol. Lett. 11, 548 (1999).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

Ohshima, S.

S. Ohshima, Y. Nakadan, T. Ikegami, and Y. Koga, IEEE Trans. Instrum. Meas. 40, 1003 (1991).
[CrossRef]

Poppe, A.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Ramsey, N. F.

N. F. Ramsey, Phys. Rev. 78, 695 (1950).
[CrossRef]

Schlager, J. B.

K. W. Holen, D. J. Jones, S. T. Cundiff, J. Ye, J. B. Schlager, and E. P. Ippen, IEEE LEOS Newsletter 17(6), 6 (2003).

Searle, C. L.

L. S. Cutler and C. L. Searle, Proc. IEEE 54, 136 (1966).
[CrossRef]

Shimoda, K.

N. Hata and K. Shimoda, Appl. Phys. 22, 1 (1980).
[CrossRef]

Spielmann, C.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Suzuki, K.

Tempea, G.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Udem, T.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Ye, J.

K. W. Holen, D. J. Jones, S. T. Cundiff, J. Ye, J. B. Schlager, and E. P. Ippen, IEEE LEOS Newsletter 17(6), 6 (2003).

Yoshida, E.

E. Yoshida and M. Nakazawa, IEEE Photonics Technol. Lett. 11, 548 (1999).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

Ann. N.Y. Acad. Sci. (1)

H. Lyons, Ann. N.Y. Acad. Sci. 55, 831 (1952).
[CrossRef]

Appl. Phys. (1)

N. Hata and K. Shimoda, Appl. Phys. 22, 1 (1980).
[CrossRef]

Electron. Lett. (1)

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

IEEE LEOS Newsletter (1)

K. W. Holen, D. J. Jones, S. T. Cundiff, J. Ye, J. B. Schlager, and E. P. Ippen, IEEE LEOS Newsletter 17(6), 6 (2003).

IEEE Photonics Technol. Lett. (1)

E. Yoshida and M. Nakazawa, IEEE Photonics Technol. Lett. 11, 548 (1999).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. Ohshima, Y. Nakadan, T. Ikegami, and Y. Koga, IEEE Trans. Instrum. Meas. 40, 1003 (1991).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

N. F. Ramsey, Phys. Rev. 78, 695 (1950).
[CrossRef]

Phys. Rev. Lett. (1)

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
[CrossRef] [PubMed]

Proc. IEEE (2)

L. S. Cutler and C. L. Searle, Proc. IEEE 54, 136 (1966).
[CrossRef]

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cs atomic clock with a 9.1926 - GHz regeneratively MLFL. LD, laser diode; PM-EDF, polarization-maintaining erbium-doped fiber; PM-DSF, polarization-maintaining dispersion-shifted fiber.

Fig. 2
Fig. 2

Microwave signal generated from a regeneratively MLFL. (a) Voltage signal to the PZT of the laser cavity, (b) change in the microwave clock frequency.

Fig. 3
Fig. 3

Optical output characteristics of the Cs atomic clock. (a) Optical pulse waveform measured with an autocorrelator, (b) spectral profile (longitudinal modes) of the laser output pulse, (c) 9.1926 - GHz electrical clock signal.

Fig. 4
Fig. 4

Ramsey fringe characteristics of a commercial Cs beam tube observed with a regeneratively MLFL. (a) Ramsey fringe pattern of the Cs resonance, (b) first derivative of the Ramsey fringe shown in (a).

Fig. 5
Fig. 5

Frequency stability of the output signal of the Cs optical atomic clock. (a) Frequency fluctuation, (b) Allan variance.

Metrics