Abstract

Snapshot hyperspectral imaging simultaneously acquires spatial and spectral information about a scene. We report on the first, to our knowledge, all-reflective snapshot hyperspectral imager in the form of a computed tomography imaging spectrometer (CTIS). The reflective design allows for instrument simplicity for applications in the ultraviolet and infrared. To realize a CTIS in a reflective Offner configuration, a reflective two-dimensional computer-generated hologram grating is fabricated on a convex spherical substrate by direct-write electron-beam lithography. Furthermore, a reconfigurable reflective field stop is implemented with a micromirror array to provide high-contrast spatial–spectral filtering, region-of-interest selection, and spatial structure formation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okamoto and I. Yamaguchi, Opt. Lett. 16, 1277 (1991).
    [CrossRef] [PubMed]
  2. F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, and D. V. Karpukhin, Opt. Spectrosc. 71, 561 (1991).
  3. T. Okamoto, A. Takahashi, and I. Yamaguchi, Appl. Spectrosc. 47, 1198 (1993).
    [CrossRef]
  4. M. R. Descour and E. L. Dereniak, Appl. Opt. 34, 4817 (1995).
    [CrossRef] [PubMed]
  5. M. R. Descour, C. E. Volin, E. L. Dereniak, T. M. Gleeson, M. F. Hopkins, D. W. Wilson, and P. D. Maker, Appl. Opt. 36, 3694 (1997).
    [CrossRef] [PubMed]
  6. D. W. Wilson, P. D. Maker, R. E. Muller, and P. Z. Mouroulis, “Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events,” U.S. patent 6,522,403, assigned to NASA (February 18, 2003).
  7. A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent 3,748,015 (1973).
  8. D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
    [CrossRef]
  9. P. Mouroulis, R. O. Green, and T. G. Chrien, Appl. Opt. 39, 2210 (2000).
    [CrossRef]
  10. J. P. Backlund, D. W. Wilson, and R. E. Muller, in Frontiers in Optics/Laser Science XX collocated with the Diffractive and Micro-Optics/Optical Fabrication and Testing Topical Meetings on CD-ROM (Optical Society of America, 2004), presentation DMB6.
  11. P. D. Maker, R. E. Muller, D. W. Wilson, and P. Mouroulis, in Diffractive Optics and Micro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 234–236.
  12. P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, Appl. Opt. 37, 7200 (1998).
    [CrossRef]
  13. P. D. Maker, R. E. Muller, and D. W. Wilson, “Diffractive optical elements on non-flat substrates using electron beam lithography,” U.S. patent 6,480,333, assigned to California Institute of Technology, Pasadena, Calif. (1998).
  14. D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, Proc. SPIE 5173, 115 (2003).
    [CrossRef]
  15. W. R. Johnson, D. W. Wilson, G. Bearman, and J. Backlund, Proc. SPIE 5660, 88 (2004).
    [CrossRef]
  16. K. J. Kearney and Z. Ninkov, Proc. SPIE 3292, 81 (1998).
    [CrossRef]
  17. J. P. Garcia and E. L. Dereniak, Appl. Opt. 38, 3745 (1999).
    [CrossRef]

2004 (1)

W. R. Johnson, D. W. Wilson, G. Bearman, and J. Backlund, Proc. SPIE 5660, 88 (2004).
[CrossRef]

2003 (2)

D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
[CrossRef]

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, Proc. SPIE 5173, 115 (2003).
[CrossRef]

2000 (1)

1999 (1)

1998 (2)

1997 (1)

1995 (1)

1993 (1)

1991 (2)

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, and D. V. Karpukhin, Opt. Spectrosc. 71, 561 (1991).

T. Okamoto and I. Yamaguchi, Opt. Lett. 16, 1277 (1991).
[CrossRef] [PubMed]

Backlund, J.

W. R. Johnson, D. W. Wilson, G. Bearman, and J. Backlund, Proc. SPIE 5660, 88 (2004).
[CrossRef]

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, Proc. SPIE 5173, 115 (2003).
[CrossRef]

Backlund, J. P.

J. P. Backlund, D. W. Wilson, and R. E. Muller, in Frontiers in Optics/Laser Science XX collocated with the Diffractive and Micro-Optics/Optical Fabrication and Testing Topical Meetings on CD-ROM (Optical Society of America, 2004), presentation DMB6.

Bearman, G.

W. R. Johnson, D. W. Wilson, G. Bearman, and J. Backlund, Proc. SPIE 5660, 88 (2004).
[CrossRef]

Bulygin, F. V.

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, and D. V. Karpukhin, Opt. Spectrosc. 71, 561 (1991).

Chrien, T. G.

Dereniak, E. L.

Descour, M. R.

Dudley, D.

D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
[CrossRef]

Duncan, W. M.

D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
[CrossRef]

Garcia, J. P.

Gleeson, T. M.

Green, R. O.

Hopkins, M. F.

Johnson, W. R.

W. R. Johnson, D. W. Wilson, G. Bearman, and J. Backlund, Proc. SPIE 5660, 88 (2004).
[CrossRef]

Karpukhin, D. V.

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, and D. V. Karpukhin, Opt. Spectrosc. 71, 561 (1991).

Kearney, K. J.

K. J. Kearney and Z. Ninkov, Proc. SPIE 3292, 81 (1998).
[CrossRef]

Levin, G. G.

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, and D. V. Karpukhin, Opt. Spectrosc. 71, 561 (1991).

Maker, P. D.

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, Proc. SPIE 5173, 115 (2003).
[CrossRef]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, Appl. Opt. 37, 7200 (1998).
[CrossRef]

M. R. Descour, C. E. Volin, E. L. Dereniak, T. M. Gleeson, M. F. Hopkins, D. W. Wilson, and P. D. Maker, Appl. Opt. 36, 3694 (1997).
[CrossRef] [PubMed]

P. D. Maker, R. E. Muller, D. W. Wilson, and P. Mouroulis, in Diffractive Optics and Micro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 234–236.

P. D. Maker, R. E. Muller, and D. W. Wilson, “Diffractive optical elements on non-flat substrates using electron beam lithography,” U.S. patent 6,480,333, assigned to California Institute of Technology, Pasadena, Calif. (1998).

D. W. Wilson, P. D. Maker, R. E. Muller, and P. Z. Mouroulis, “Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events,” U.S. patent 6,522,403, assigned to NASA (February 18, 2003).

Mouroulis, P.

P. Mouroulis, R. O. Green, and T. G. Chrien, Appl. Opt. 39, 2210 (2000).
[CrossRef]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, Appl. Opt. 37, 7200 (1998).
[CrossRef]

P. D. Maker, R. E. Muller, D. W. Wilson, and P. Mouroulis, in Diffractive Optics and Micro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 234–236.

Mouroulis, P. Z.

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, Proc. SPIE 5173, 115 (2003).
[CrossRef]

D. W. Wilson, P. D. Maker, R. E. Muller, and P. Z. Mouroulis, “Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events,” U.S. patent 6,522,403, assigned to NASA (February 18, 2003).

Muller, R. E.

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, Proc. SPIE 5173, 115 (2003).
[CrossRef]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, Appl. Opt. 37, 7200 (1998).
[CrossRef]

D. W. Wilson, P. D. Maker, R. E. Muller, and P. Z. Mouroulis, “Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events,” U.S. patent 6,522,403, assigned to NASA (February 18, 2003).

J. P. Backlund, D. W. Wilson, and R. E. Muller, in Frontiers in Optics/Laser Science XX collocated with the Diffractive and Micro-Optics/Optical Fabrication and Testing Topical Meetings on CD-ROM (Optical Society of America, 2004), presentation DMB6.

P. D. Maker, R. E. Muller, D. W. Wilson, and P. Mouroulis, in Diffractive Optics and Micro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 234–236.

P. D. Maker, R. E. Muller, and D. W. Wilson, “Diffractive optical elements on non-flat substrates using electron beam lithography,” U.S. patent 6,480,333, assigned to California Institute of Technology, Pasadena, Calif. (1998).

Ninkov, Z.

K. J. Kearney and Z. Ninkov, Proc. SPIE 3292, 81 (1998).
[CrossRef]

Offner, A.

A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent 3,748,015 (1973).

Okamoto, T.

Slaughter, J.

D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
[CrossRef]

Takahashi, A.

Vishnyakov, G. N.

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, and D. V. Karpukhin, Opt. Spectrosc. 71, 561 (1991).

Volin, C. E.

Wilson, D. W.

W. R. Johnson, D. W. Wilson, G. Bearman, and J. Backlund, Proc. SPIE 5660, 88 (2004).
[CrossRef]

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, Proc. SPIE 5173, 115 (2003).
[CrossRef]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, Appl. Opt. 37, 7200 (1998).
[CrossRef]

M. R. Descour, C. E. Volin, E. L. Dereniak, T. M. Gleeson, M. F. Hopkins, D. W. Wilson, and P. D. Maker, Appl. Opt. 36, 3694 (1997).
[CrossRef] [PubMed]

P. D. Maker, R. E. Muller, and D. W. Wilson, “Diffractive optical elements on non-flat substrates using electron beam lithography,” U.S. patent 6,480,333, assigned to California Institute of Technology, Pasadena, Calif. (1998).

P. D. Maker, R. E. Muller, D. W. Wilson, and P. Mouroulis, in Diffractive Optics and Micro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 234–236.

J. P. Backlund, D. W. Wilson, and R. E. Muller, in Frontiers in Optics/Laser Science XX collocated with the Diffractive and Micro-Optics/Optical Fabrication and Testing Topical Meetings on CD-ROM (Optical Society of America, 2004), presentation DMB6.

D. W. Wilson, P. D. Maker, R. E. Muller, and P. Z. Mouroulis, “Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events,” U.S. patent 6,522,403, assigned to NASA (February 18, 2003).

Yamaguchi, I.

Appl. Opt. (5)

Appl. Spectrosc. (1)

Opt. Lett. (1)

Opt. Spectrosc. (1)

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, and D. V. Karpukhin, Opt. Spectrosc. 71, 561 (1991).

Proc. SPIE (4)

D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
[CrossRef]

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, Proc. SPIE 5173, 115 (2003).
[CrossRef]

W. R. Johnson, D. W. Wilson, G. Bearman, and J. Backlund, Proc. SPIE 5660, 88 (2004).
[CrossRef]

K. J. Kearney and Z. Ninkov, Proc. SPIE 3292, 81 (1998).
[CrossRef]

Other (5)

J. P. Backlund, D. W. Wilson, and R. E. Muller, in Frontiers in Optics/Laser Science XX collocated with the Diffractive and Micro-Optics/Optical Fabrication and Testing Topical Meetings on CD-ROM (Optical Society of America, 2004), presentation DMB6.

P. D. Maker, R. E. Muller, D. W. Wilson, and P. Mouroulis, in Diffractive Optics and Micro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 234–236.

P. D. Maker, R. E. Muller, and D. W. Wilson, “Diffractive optical elements on non-flat substrates using electron beam lithography,” U.S. patent 6,480,333, assigned to California Institute of Technology, Pasadena, Calif. (1998).

D. W. Wilson, P. D. Maker, R. E. Muller, and P. Z. Mouroulis, “Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events,” U.S. patent 6,522,403, assigned to NASA (February 18, 2003).

A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent 3,748,015 (1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Model of the system showing a split-mirror Offner relay with a grating, a DMD, and a FPA. (b) Breadboard system in the laboratory. The image-forming objective assembly is not shown for clarity.

Fig. 2
Fig. 2

CTIS dispersed image showing the quasi-panchromatic zeroth order surrounded by higher orders. Three round reflective targets and a LED are imaged. The background, which is not illuminated, shows as dark streaks in the dispersion pattern.

Fig. 3
Fig. 3

Simultaneously obtained spectral reconstruction for CTIS. Results showing point spectrometer (solid curve) and CTIS (squares) are in good agreement for features down to approximately 5% reflectance. The LED is near the center of the field with the three oxides near the edge of the scene (see Fig. 2).

Metrics