Abstract

An embedded metal-wire nanograting is designed and fabricated for the first time to our knowledge. This artificial material could be used as a broadband polarizing beam splitter to reflect s-polarized light and transmit p-polarized light. An upper-cladding layer of the same material as the gratings is deposited on the ridge of the gratings, whereas the metal wire is deposited in the grating trenches. This embedded structure makes the grating more firm in its applications. High polarization efficiency and low insertion loss with a broad wavelength range (9001700nm) and a wide angular tolerance are obtained by optimization of the designed structure.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shiraishi and S. Kawakami, Opt. Lett. 15, 516 (1990).
    [CrossRef] [PubMed]
  2. J. L. Pezzaniti and R. A. Chipman, Appl. Opt. 33, 1916 (1994).
    [CrossRef]
  3. E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998).
  4. K. Knop, Opt. Commun. 26, 281 (1978).
    [CrossRef]
  5. A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984).
  6. F. Flory, L. Escoubas, and B. Lazarides, Appl. Opt. 41, 3332 (2002).
    [CrossRef] [PubMed]
  7. K. R. Foster, IEEE Spectrum 35(6), 91 (1998).
    [CrossRef]
  8. X. J. Yu and H. S. Kwok, J. Appl. Phys. 93, 4407 (2003).
    [CrossRef]

2003

X. J. Yu and H. S. Kwok, J. Appl. Phys. 93, 4407 (2003).
[CrossRef]

2002

1998

K. R. Foster, IEEE Spectrum 35(6), 91 (1998).
[CrossRef]

1994

1990

1978

K. Knop, Opt. Commun. 26, 281 (1978).
[CrossRef]

Chipman, R. A.

Escoubas, L.

Flory, F.

Foster, K. R.

K. R. Foster, IEEE Spectrum 35(6), 91 (1998).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998).

Kawakami, S.

Knop, K.

K. Knop, Opt. Commun. 26, 281 (1978).
[CrossRef]

Kwok, H. S.

X. J. Yu and H. S. Kwok, J. Appl. Phys. 93, 4407 (2003).
[CrossRef]

Lazarides, B.

Pezzaniti, J. L.

Shiraishi, K.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984).

Yu, X. J.

X. J. Yu and H. S. Kwok, J. Appl. Phys. 93, 4407 (2003).
[CrossRef]

Appl. Opt.

IEEE Spectrum

K. R. Foster, IEEE Spectrum 35(6), 91 (1998).
[CrossRef]

J. Appl. Phys.

X. J. Yu and H. S. Kwok, J. Appl. Phys. 93, 4407 (2003).
[CrossRef]

Opt. Commun.

K. Knop, Opt. Commun. 26, 281 (1978).
[CrossRef]

Opt. Lett.

Other

A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984).

E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of an embedded metal-wire nanograting. p-polarized light is transmitted and s-polarized light is reflected.

Fig. 2
Fig. 2

Polarization efficiency of p-polarized light transmission as a function of the thickness of the metal layer and air gap. The incident wavelength is 1550 nm , the period of the grating is 200 nm , and the cladding layer is 380 nm thick.

Fig. 3
Fig. 3

Polarization efficiency of s-polarized light reflection and p-polarized light transmission as a function of wavelength at various duty cycles (dc, w Λ ). Solid curves mean transmission and dashed curves mean reflection. The period of the grating is 200 nm . The thicknesses of the metal, air-gap, and upper-cladding layers are 340, 480, and 380 nm , respectively.

Fig. 4
Fig. 4

p-polarized light transmission and s-polarized light reflection efficiencies of the embedded metal-wire nanograting as functions of wavelength.

Fig. 5
Fig. 5

Scanning electron microscope photograph of the embedded metal-wire nanograting with a period of 200 nm and a duty cycle of 0.75.

Fig. 6
Fig. 6

Measured results of the p-polarized light transmission and s-polarized light reflection efficiencies of the embedded metal-wire nanograting at various wavelengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n = [ f n 1 2 + ( 1 f ) n 2 2 ] 1 2 ,
n = n 1 n 2 [ f n 2 2 + ( 1 f ) n 1 2 ] 1 2 .

Metrics