Abstract

This investigation establishes the feasibility of exploiting the surface-assisted photoalignment effect in dye-doped liquid-crystal (DDLC) films as spatial filters with controllable polarization in optical signal processing. The fabrication relies on the fact that the various intensities of the diffracted orders are responsible for various changes of the polarization state induced by the photoaligned DDLC film. Specific spatial orders in Fourier optical signal processing can be filtered by use of an analyzer placed behind the sample to control the polarization state of the diffracted orders. A simulation was performed, and the results agree closely with the experimental data.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Y. Shih, A. Shishido, P. H. Chen, M. V. Wood, and I. C. Khoo, Opt. Lett. 25, 978 (2000).
    [CrossRef]
  2. A. Emoto, H. Ono, and N. Kawatsuki, Liq. Cryst. 30, 1201 (2003).
    [CrossRef]
  3. A. Y.-G. Fuh and T.-H. Lin, J. Appl. Phys. 96, 5402 (2004).
    [CrossRef]
  4. D. Voloshchenko, A. Khyzhnyak, Y. Reznikov, and V. Reshetnyak, Jpn. J. Appl. Phys. Part 1 34, 566 (1995).
    [CrossRef]
  5. F. Simoni and O. Francescangeli, J. Phys.: Condens. Matter 11, R439 (1999).
    [CrossRef]
  6. A. Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, C.-L. Lu, and C.-Y. Tsai, Opt. Lett. 26, 1767 (2001).
    [CrossRef]
  7. C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, Appl. Phys. Lett. 83, 24 (2003).
    [CrossRef]
  8. C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, Phys. Rev. E 69, 031704 (2004).
    [CrossRef]
  9. A. Y.-G. Fuh, C.-R. Lee, and T.-S. Mo, J. Opt. Soc. Am. B 19, 2590 (2002).
    [CrossRef]
  10. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1975).

2004 (2)

A. Y.-G. Fuh and T.-H. Lin, J. Appl. Phys. 96, 5402 (2004).
[CrossRef]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, Phys. Rev. E 69, 031704 (2004).
[CrossRef]

2003 (2)

A. Emoto, H. Ono, and N. Kawatsuki, Liq. Cryst. 30, 1201 (2003).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, Appl. Phys. Lett. 83, 24 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

1999 (1)

F. Simoni and O. Francescangeli, J. Phys.: Condens. Matter 11, R439 (1999).
[CrossRef]

1995 (1)

D. Voloshchenko, A. Khyzhnyak, Y. Reznikov, and V. Reshetnyak, Jpn. J. Appl. Phys. Part 1 34, 566 (1995).
[CrossRef]

Chen, P. H.

Cheng, K.-T.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, Appl. Phys. Lett. 83, 24 (2003).
[CrossRef]

Emoto, A.

A. Emoto, H. Ono, and N. Kawatsuki, Liq. Cryst. 30, 1201 (2003).
[CrossRef]

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1975).

Francescangeli, O.

F. Simoni and O. Francescangeli, J. Phys.: Condens. Matter 11, R439 (1999).
[CrossRef]

Fu, T.-L.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, Appl. Phys. Lett. 83, 24 (2003).
[CrossRef]

Fuh, A. Y.-G.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, Phys. Rev. E 69, 031704 (2004).
[CrossRef]

A. Y.-G. Fuh and T.-H. Lin, J. Appl. Phys. 96, 5402 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, Appl. Phys. Lett. 83, 24 (2003).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and T.-S. Mo, J. Opt. Soc. Am. B 19, 2590 (2002).
[CrossRef]

A. Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, C.-L. Lu, and C.-Y. Tsai, Opt. Lett. 26, 1767 (2001).
[CrossRef]

Hsu, K.-C.

Kawatsuki, N.

A. Emoto, H. Ono, and N. Kawatsuki, Liq. Cryst. 30, 1201 (2003).
[CrossRef]

Khoo, I. C.

Khyzhnyak, A.

D. Voloshchenko, A. Khyzhnyak, Y. Reznikov, and V. Reshetnyak, Jpn. J. Appl. Phys. Part 1 34, 566 (1995).
[CrossRef]

Lee, C.-R.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, Appl. Phys. Lett. 83, 24 (2003).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and T.-S. Mo, J. Opt. Soc. Am. B 19, 2590 (2002).
[CrossRef]

Liao, C.-C.

Lin, T.-H.

A. Y.-G. Fuh and T.-H. Lin, J. Appl. Phys. 96, 5402 (2004).
[CrossRef]

Lu, C.-L.

Mo, T.-S.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, Appl. Phys. Lett. 83, 24 (2003).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and T.-S. Mo, J. Opt. Soc. Am. B 19, 2590 (2002).
[CrossRef]

Ono, H.

A. Emoto, H. Ono, and N. Kawatsuki, Liq. Cryst. 30, 1201 (2003).
[CrossRef]

Reshetnyak, V.

D. Voloshchenko, A. Khyzhnyak, Y. Reznikov, and V. Reshetnyak, Jpn. J. Appl. Phys. Part 1 34, 566 (1995).
[CrossRef]

Reznikov, Y.

D. Voloshchenko, A. Khyzhnyak, Y. Reznikov, and V. Reshetnyak, Jpn. J. Appl. Phys. Part 1 34, 566 (1995).
[CrossRef]

Shih, M. Y.

Shishido, A.

Simoni, F.

F. Simoni and O. Francescangeli, J. Phys.: Condens. Matter 11, R439 (1999).
[CrossRef]

Tsai, C.-Y.

Voloshchenko, D.

D. Voloshchenko, A. Khyzhnyak, Y. Reznikov, and V. Reshetnyak, Jpn. J. Appl. Phys. Part 1 34, 566 (1995).
[CrossRef]

Wood, M. V.

Appl. Phys. Lett. (1)

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, Appl. Phys. Lett. 83, 24 (2003).
[CrossRef]

J. Appl. Phys. (1)

A. Y.-G. Fuh and T.-H. Lin, J. Appl. Phys. 96, 5402 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

F. Simoni and O. Francescangeli, J. Phys.: Condens. Matter 11, R439 (1999).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

D. Voloshchenko, A. Khyzhnyak, Y. Reznikov, and V. Reshetnyak, Jpn. J. Appl. Phys. Part 1 34, 566 (1995).
[CrossRef]

Liq. Cryst. (1)

A. Emoto, H. Ono, and N. Kawatsuki, Liq. Cryst. 30, 1201 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, Phys. Rev. E 69, 031704 (2004).
[CrossRef]

Other (1)

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. Lenses L1 and L2 are used to expand a plane wave, and D is a diaphragm. Lenses L3 and L4 are the transformation lenses, and A is an analyzer. The DDLC sample is placed in the transform plane. S C , command surface; S R , reference surface.

Fig. 2
Fig. 2

The object (a grating mask with 25 - μ m spacing) is a periodic step function that produces numerous diffracted orders after Fourier transformation. L1, lens.

Fig. 3
Fig. 3

A spot in a DDLC film is pumped by the zeroth-order diffracted beam and is observed with an optical microscope with (a) cross polarizers and (b) parallel polarizers. A G and A D , green-light-pumped and dark regions, respectively.

Fig. 4
Fig. 4

(b)–(h) Images observed by adjusting angle α made by the analyzer with the pump-beam polarization in the setup shown in Fig. 1 to the angles shown. (a) Image of the object.

Fig. 5
Fig. 5

Simulated images with various angles α (eight orders are considered in the Fourier transform); as marked for (b)–(h). (a) Image of all passes (eight orders).

Metrics