Abstract

We demonstrate that, in suitably designed cells with undoped nematic liquid crystals, extraordinary-wave spatial solitons can be excited at every applied voltage without adjustments in the input polarization. Their walk-off, hence direction of propagation, is externally controlled over angles as large as 7°. The results pave the way not only to polarization-forgiving generation but also to voltage readdressing of these extraordinary-wave nematicons.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
    [CrossRef] [PubMed]
  2. G. Stegeman, D. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
    [CrossRef]
  3. A. D. Boardman and A. P. Sukhorukov, eds., Soliton Driven Photonics (Kluwer Academic, 2001).
    [CrossRef]
  4. S. Trillo and W. E. Torruellas, eds., Spatial Solitons (Springer-Verlag, 2001).
    [CrossRef]
  5. Y. Kivshar and G. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, 2003).
  6. C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
    [CrossRef]
  7. N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
    [CrossRef]
  8. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).
  9. C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
    [CrossRef]
  10. M. Peccianti, K. A. Brzadkiewicz, and G. Assanto, Opt. Lett. 27, 1460 (2002).
    [CrossRef]
  11. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Nature 432, 733 (2004).
    [CrossRef] [PubMed]
  12. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 18 (2002).
    [CrossRef]
  13. F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, 1997).
    [CrossRef]
  14. G. Assanto, M. Peccianti, and C. Conti, Opt. Photonics News 14(2), 44 (2003).
    [CrossRef]
  15. G. Assanto and M. Peccianti, IEEE J. Quantum Electron. 39, 13 (2003).
    [CrossRef]
  16. D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).
    [CrossRef]
  17. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993).
  18. M. J. Weber, ed., CRC Handbook of Laser Science and Technology (CRC Press, 1995), Suppl. 2.

2004 (2)

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Nature 432, 733 (2004).
[CrossRef] [PubMed]

2003 (3)

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef]

G. Assanto, M. Peccianti, and C. Conti, Opt. Photonics News 14(2), 44 (2003).
[CrossRef]

G. Assanto and M. Peccianti, IEEE J. Quantum Electron. 39, 13 (2003).
[CrossRef]

2002 (2)

M. Peccianti, K. A. Brzadkiewicz, and G. Assanto, Opt. Lett. 27, 1460 (2002).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 18 (2002).
[CrossRef]

2000 (1)

G. Stegeman, D. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

1999 (1)

G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[CrossRef] [PubMed]

1986 (1)

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

1972 (1)

Agrawal, G.

Y. Kivshar and G. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, 2003).

Assanto, G.

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Nature 432, 733 (2004).
[CrossRef] [PubMed]

G. Assanto, M. Peccianti, and C. Conti, Opt. Photonics News 14(2), 44 (2003).
[CrossRef]

G. Assanto and M. Peccianti, IEEE J. Quantum Electron. 39, 13 (2003).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 18 (2002).
[CrossRef]

M. Peccianti, K. A. Brzadkiewicz, and G. Assanto, Opt. Lett. 27, 1460 (2002).
[CrossRef]

Berreman, D. W.

Brzadkiewicz, K. A.

Christodoulides, D.

G. Stegeman, D. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

Conti, C.

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Nature 432, 733 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef]

G. Assanto, M. Peccianti, and C. Conti, Opt. Photonics News 14(2), 44 (2003).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 18 (2002).
[CrossRef]

De Gennes, P. G.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993).

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Nature 432, 733 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 18 (2002).
[CrossRef]

Khoo, I. C.

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).

Kivshar, Y.

Y. Kivshar and G. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, 2003).

Peccianti, M.

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Nature 432, 733 (2004).
[CrossRef] [PubMed]

G. Assanto and M. Peccianti, IEEE J. Quantum Electron. 39, 13 (2003).
[CrossRef]

G. Assanto, M. Peccianti, and C. Conti, Opt. Photonics News 14(2), 44 (2003).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef]

M. Peccianti, K. A. Brzadkiewicz, and G. Assanto, Opt. Lett. 27, 1460 (2002).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 18 (2002).
[CrossRef]

Prost, J.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993).

Segev, M.

G. Stegeman, D. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[CrossRef] [PubMed]

Simoni, F.

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, 1997).
[CrossRef]

Stegeman, G.

G. Stegeman, D. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[CrossRef] [PubMed]

Sukhov, A. V.

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Tabiryan, N. V.

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Nature 432, 733 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 18 (2002).
[CrossRef]

Zel’dovich, B. Y.

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Appl. Phys. Lett. (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Appl. Phys. Lett. 81, 18 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Assanto and M. Peccianti, IEEE J. Quantum Electron. 39, 13 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Stegeman, D. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

Mol. Cryst. Liq. Cryst. (1)

N. V. Tabiryan, A. V. Sukhov, and B. Y. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Nature (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Nature 432, 733 (2004).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Photonics News (1)

G. Assanto, M. Peccianti, and C. Conti, Opt. Photonics News 14(2), 44 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef]

Science (1)

G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[CrossRef] [PubMed]

Other (7)

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).

A. D. Boardman and A. P. Sukhorukov, eds., Soliton Driven Photonics (Kluwer Academic, 2001).
[CrossRef]

S. Trillo and W. E. Torruellas, eds., Spatial Solitons (Springer-Verlag, 2001).
[CrossRef]

Y. Kivshar and G. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, 2003).

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, 1997).
[CrossRef]

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993).

M. J. Weber, ed., CRC Handbook of Laser Science and Technology (CRC Press, 1995), Suppl. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the NLC sample: (a) side view, (b) top view, (c) front view. Voltage at 1 kHz is applied along X via two transparent electrodes deposited onto the glass slides that define the Y Z plane. ITO, indium tin oxide.

Fig. 2
Fig. 2

(a) Geometry of director n ̂ in the X Y Z laboratory frame. (b) Excitation geometry: electric field E of the linearly polarized input beam forms angle β with the X axis. β is defined to be positive in the first quadrant ( Y > 0 ) .

Fig. 3
Fig. 3

Input polarization angle β versus applied voltage V. The solid (dashed) line stems from the model and represents the optimum angle β that allows all the injected power to be transfered into an e (o) wave in a bulk NLC ( Z > d ) . Such an angle remains constant at 45° (135°) as the bias varies. Symbols are the corresponding measured data, from linear ( 20 μ W ; squares) to solitary (3 mW; stars regimes).

Fig. 4
Fig. 4

Measured (solid curves) and interpolated (dashed curves) solitary e-wave trajectories for various biases. Inset, photographs of spatial solitons launched by a 3-mW beam polarized along β = π 4 and propagating for V = 0 V (top) and V = 2 V (bottom).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ = ( E X H Y E Y H X ) ,
Δ = [ 0 μ 0 0 0 ϵ X X ϵ Z X 2 ϵ Z Z 0 ϵ X Y ϵ X Z ϵ Z Y ϵ Z Z 0 0 0 0 μ 0 ϵ X Y ϵ X Z ϵ Z Y ϵ Z Z 0 ϵ Y Y ϵ Y Z 2 ϵ Z Z 0 ] ,
( ϵ sin 2 ξ + ϵ cos 2 ξ ) d 2 v d X 2 + Δ ϵ LF sin 2 ξ d ξ d X d v d X = 0 ,
( K 1 cos 2 ξ + K 3 sin 2 ξ ) d 2 ξ d X 2 + K 3 K 1 2 sin 2 ξ ( d ξ d X ) 2 + Δ ϵ LF 1 2 ( d v d X ) 2 sin 2 ξ = 0

Metrics