Abstract

Experiments performed on turbid phantoms demonstrate that spatially modulated illumination facilitates quantitative wide-field optical property mapping and tomographic imaging in turbid media.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bevilacqua, D. Piguet, P. Marquet, J. Gross, B. Tromberg, and C. Depeursinge, Appl. Opt. 38, 4939 (1999).
    [CrossRef]
  2. N. Dognitz and G. Wagnieres, Lasers Med. Sci. 13, 55 (1998).
    [CrossRef]
  3. T. Pham, O. Coquoz, J. Fishkin, E. Anderson, and B. J. Tromberg, Rev. Sci. Instrum. 7, 2500 (2000).
    [CrossRef]
  4. A. B. Carlson, Communication Systems (McGraw-Hill, New York, 1988).
  5. M. A.A. Neil, R. Juskaitis, and T. Wilson, Opt. Lett. 22, 19057 (1997).
    [CrossRef]
  6. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, Appl. Opt. 35, 2304 (1996).
    [CrossRef] [PubMed]
  7. X. Cheng and D. A. Boas, Opt. Express 3, 118 (1998), http://www.opticsexpress.org.
    [CrossRef] [PubMed]

2000

T. Pham, O. Coquoz, J. Fishkin, E. Anderson, and B. J. Tromberg, Rev. Sci. Instrum. 7, 2500 (2000).
[CrossRef]

1999

1998

1997

M. A.A. Neil, R. Juskaitis, and T. Wilson, Opt. Lett. 22, 19057 (1997).
[CrossRef]

1996

Anderson, E.

T. Pham, O. Coquoz, J. Fishkin, E. Anderson, and B. J. Tromberg, Rev. Sci. Instrum. 7, 2500 (2000).
[CrossRef]

Bevilacqua, F.

Boas, D. A.

Carlson, A. B.

A. B. Carlson, Communication Systems (McGraw-Hill, New York, 1988).

Cheng, X.

Coquoz, O.

T. Pham, O. Coquoz, J. Fishkin, E. Anderson, and B. J. Tromberg, Rev. Sci. Instrum. 7, 2500 (2000).
[CrossRef]

Depeursinge, C.

Dognitz, N.

N. Dognitz and G. Wagnieres, Lasers Med. Sci. 13, 55 (1998).
[CrossRef]

Fishkin, J.

T. Pham, O. Coquoz, J. Fishkin, E. Anderson, and B. J. Tromberg, Rev. Sci. Instrum. 7, 2500 (2000).
[CrossRef]

Gross, J.

Hibst, R.

Juskaitis, R.

M. A.A. Neil, R. Juskaitis, and T. Wilson, Opt. Lett. 22, 19057 (1997).
[CrossRef]

Kienle, A.

Lilge, L.

Marquet, P.

Neil, M. A.A.

M. A.A. Neil, R. Juskaitis, and T. Wilson, Opt. Lett. 22, 19057 (1997).
[CrossRef]

Patterson, M. S.

Pham, T.

T. Pham, O. Coquoz, J. Fishkin, E. Anderson, and B. J. Tromberg, Rev. Sci. Instrum. 7, 2500 (2000).
[CrossRef]

Piguet, D.

Steiner, R.

Tromberg, B.

Tromberg, B. J.

T. Pham, O. Coquoz, J. Fishkin, E. Anderson, and B. J. Tromberg, Rev. Sci. Instrum. 7, 2500 (2000).
[CrossRef]

Wagnieres, G.

N. Dognitz and G. Wagnieres, Lasers Med. Sci. 13, 55 (1998).
[CrossRef]

Wilson, B. C.

Wilson, T.

M. A.A. Neil, R. Juskaitis, and T. Wilson, Opt. Lett. 22, 19057 (1997).
[CrossRef]

Appl. Opt.

Lasers Med. Sci.

N. Dognitz and G. Wagnieres, Lasers Med. Sci. 13, 55 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

M. A.A. Neil, R. Juskaitis, and T. Wilson, Opt. Lett. 22, 19057 (1997).
[CrossRef]

Rev. Sci. Instrum.

T. Pham, O. Coquoz, J. Fishkin, E. Anderson, and B. J. Tromberg, Rev. Sci. Instrum. 7, 2500 (2000).
[CrossRef]

Other

A. B. Carlson, Communication Systems (McGraw-Hill, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Example multifrequency data (open squares) and corresponding fit (solid curve). The turbid medium acts as a low-pass filter.

Fig. 2
Fig. 2

Absorption (top) and scattering (bottom) data of the spatially varying phantom optical properties. Quantitative images (inverse millimeters, left) and corresponding pixel histograms (right) demonstrate good agreement with known bulk properties.

Fig. 3
Fig. 3

Schematic diagram of a heterogeneous phantom.

Fig. 4
Fig. 4

Top to bottom, raw reflectance, ac modulation, and frequency-derivative images of the heterogeneous phantom.

Fig. 5
Fig. 5

Optical tomograph of the heterogeneous turbid phantom from frequency-derivative images.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S = S 0 [ 1 2 + M sin ( 2 π f x x ) ] ,
2 ϕ μ eff 2 ϕ = S ,
z 2 ϕ AC μ eff 2 ϕ AC = M S 0 ,
μ eff 2 = μ eff 2 + ( 2 π f x ) 2 .
ac = ( 2 1 2 3 ) [ ( A B ) 2 + ( B C ) 2 + ( C A ) 2 ] 1 2 ,

Metrics