Abstract

We present a new technique that produces en face tomographic images with a 10-μs acquisition time per image. The setup consists of an interference microscope with stroboscopic illumination provided by a xenon arc flash lamp (10-μs flashes at 15Hz). The tomographic images are obtained from two phase-opposed interferometric images recorded simultaneously by two synchronized CCD cameras. Transverse resolution better than 1.0μm is achieved by use of high-numerical-aperture microscope objectives. The short coherence length of the source yields an axial resolution of 0.9μm. 3×3  pixel binning leads to a detection sensitivity of 71dB. Our system is suitable for various applications, particularly in biology for in vivo cellular-level imaging.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, J. Biomed. Opt. 1, 157 (1996).
    [CrossRef] [PubMed]
  3. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 24, 1221 (1999).
    [CrossRef]
  4. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherze, Opt. Lett. 27, 1800 (2002).
    [CrossRef]
  5. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, Appl. Opt. 43, 2874 (2004).
    [CrossRef] [PubMed]
  6. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, Phys. Med. Biol. 49, 1227 (2004).
    [CrossRef] [PubMed]
  7. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 21, 1408 (1996).
    [CrossRef] [PubMed]
  8. A. M. Rollins, S. Yazdanfar, M. D. Kulkarni, R. Ung-Arunyawee, and J. A. Izatt, Opt. Express 3, 219 (1998), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  9. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, Opt. Lett. 17, 151 (1992).
    [CrossRef] [PubMed]
  10. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Opt. Lett. 18, 1864 (1993).
    [CrossRef] [PubMed]
  11. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, Opt. Lett. 29, 480 (2004).
    [CrossRef] [PubMed]
  12. M. Wojkowski, V. J. Srinivasan, T. H. Ko, J. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404 (2004), http://www.opticsexpress.org.
    [CrossRef]
  13. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, Opt. Express 12, 2435 (2004), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  14. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, Opt. Express 12, 2977 (2004), http://www.opticsexpress.org.
    [CrossRef] [PubMed]

2004

2002

1999

1998

1996

1993

1992

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Apolonski, A.

Bizheva, K.

Boccara, A. C.

Boppart, S. A.

Bouma, B. E.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Chen, T. C.

de Boer, J. F.

Drexler, W.

Dubois, A.

Duker, J. S.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Golubovic, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Grieve, K.

Hee, M. R.

Hermann, B.

Huang, D.

Ippen, E. P.

Izatt, J. A.

Kärtner, F. X.

Knight, J. C.

Ko, T. H.

Kowalczyk, A.

Kulkarni, M. D.

Lecaque, R.

Li, X. D.

Lin, C. P.

Moneron, G.

Morgner, U.

Nassif, N.

Nassif, N. A.

Park, B. H.

Pierce, M. C.

Pitris, C.

Povazay, B.

Puliafito, C. A.

Rollins, A. M.

Russell, P. St. J.

Sattmann, H.

Scherze, E.

Schuman, J. S.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Opt. Lett. 18, 1864 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

Tearney, G. J.

Ung-Arunyawee, R.

Unterhuber, A.

Vabre, L.

Vetterlein, M.

Wadsworth, W. J.

Wojkowski, M.

Yazdanfar, S.

Yun, S. H.

Yun, S.-H.

Appl. Opt.

J. Biomed. Opt.

A. F. Fercher, J. Biomed. Opt. 1, 157 (1996).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, Phys. Med. Biol. 49, 1227 (2004).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: MO, microscope objective (water immersion, 0.5–0.8 NA); BS, beam splitter (broadband, nonpolarizing); RM, reference mirror ( 30 % reflectivity in water); DCP, dispersion-compensation plates ( 3 mm thick); L, lens ( 30 - cm focal length, achromatic); QWP, quarter-wave plate (achromatic); PBS, polarizing beam splitter; PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Experimental interferogram response produced by the stroboscopic ultrahigh-resolution full-field OCT system, measured by scanning a mirror under the objective in the sample arm. The fringe envelope FWHM determines the axial resolution to be 0.9 μ m (in water).

Fig. 3
Fig. 3

Interferometric signal power envelope (in logarithmic scale) as a function of sample axial ( z ) speed. The sample was a mirror mounted on a loudspeaker. The simulation was carried out taking into account the actual temporal shape of the illumination flashes ( FWHM = 10 μ s ) .

Fig. 4
Fig. 4

Tomographic image of a portion of the African frog (Xenopus laevis) tadpole eye. The live tadpole was imaged directly in water in which it was free to move. The image is presented in logarithmic scale with inverted contrast.

Metrics