Abstract

We present a promising coupling device, namely, a terahertz (THz) planar photonic crystal (PhC) lens based on the effective refractive-index contrast between the PhC and the surrounding unpatterned area. Three-dimensional finite-difference time-domain calculations show a 90% power transfer from a 100-μm silicon waveguide to a 10-μm waveguide, and 45% coupling efficiency is confirmed experimentally. These results demonstrate the utility of the PhC lens as an effective approach to coupling into PhC THz circuits.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides

Sharee J. McNab, Nikolaj Moll, and Yurii A. Vlasov
Opt. Express 11(22) 2927-2939 (2003)

Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides

Caihua Chen, Ahmed Sharkawy, David M. Pustai, Shouyuan Shi, and Dennis W. Prather
Opt. Express 11(23) 3153-3159 (2003)

Dispersion-based optical routing in photonic crystals

Dennis W. Prather, Shouyuan Shi, David M. Pustai, Caihua Chen, Sriram Venkataraman, Ahmed Sharkawy, Garrett J. Schneider, and Janusz Murakowski
Opt. Lett. 29(1) 50-52 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription